Spring 2012 Math 151

Week in Review \# 2

sections: 1.2, 1.3, 2.2
courtesy: Joe Kahlig

Section 1.2

1. Find $\mathbf{a} \cdot \mathbf{b}$ given the following information:
(a) $\mathbf{a}=\langle-3,5\rangle$ and $\mathbf{b}=\langle 1,2\rangle$
(b) $|\mathbf{a}|=5,|\mathbf{b}|=12$, and the angle between \mathbf{a} and \mathbf{b} is 60°.
2. Find the angle between the vectors $\langle 3,2\rangle$ and $\langle-2,1\rangle$
3. Find the value(s) of x so that the following vectors are orthogonal: $\mathbf{a}=\langle 2 x, 5\rangle$ and $\mathbf{b}=\langle x, x-5\rangle$
4. Find the scalar and vector projection of $\langle-2,1\rangle$ onto $\langle 6,1\rangle$.
5. Find the value of x so that vector projection of $\mathbf{b}=<x, 7>$ onto $\mathbf{a}=<1,4>$ is $<5,20>$

6 . Find the distance from the point $(4,0)$ to the line $y=2 x+1$.
7. A constant force of $\mathbf{F}=12 \mathbf{i}+15 \mathbf{j}$, magnitude is in Newtons, moves an object along a straight line from the point $(1,5)$ to the point $(6,8)$. Find the work done if the distance is measured in meters.
8. A crate is pulled on a level surface for a distance of 50 m under a constant force of 25 N . The force is applied at an angle of 20° with the ground. Find the work done to move the crate.

Section 1.3

9. Find a Cartesian equation for the following parametric curves. Sketch the curve.
(a) $x=3 t+4, y=5-t,-2 \leq t \leq 4$
(b) $x=4 \sin \theta, y=2 \cos \theta, 0 \leq \theta \leq \pi$
(c) $\mathbf{r}(\theta)=\langle 2 \cos (\theta), \sec (\theta)\rangle, \frac{-\pi}{2}<\theta<\frac{\pi}{2}$
10. An object is moving in the xy-plane and its position after t seconds is $\mathbf{r}(t)=\left\langle 4 t^{2}-3,2 t-1\right\rangle$
(a) Does the object go thru the point $(32,5)$? If so, at what value of t does this happen?
(b) Does the object go thru the point $(141,11)$? If so, at what value of t does this happen?
(c) Find the Cartesian equation of the curve and sketch the curve.
11. Find parametric equations and the vector equation for the line described below:
(a) The line passes thru the points $(0,3)$ and $(-3,5)$.
(b) The line passes thru the point $(-1,5)$ and is parallel to the line $x=2+3 t, y=5+2 t$
12. Determine whether the following lines are parallel or perpendicular. If they are not parallel, find the point of intersection.
$L_{1}(t)=<1+t, 8+3 t>$
$L_{2}(s)=<3-s, 7-2 s>$

Section 2.2

Use the graph of $f(x)$ to answer questions 13-21

13. $\lim _{x \rightarrow-5^{-}} f(x)=$
14. $\lim _{x \rightarrow-5^{+}} f(x)=$
15. $\lim _{x \rightarrow-5} f(x)=$
16. $\lim _{x \rightarrow-1} f(x)=$
17. $\lim _{x \rightarrow 2} f(x)=$
18. $\lim _{x \rightarrow-3} f(x)=$
19. $\lim _{x \rightarrow 5} f(x)=$
20. $\lim _{x \rightarrow \infty} f(x)=$
21. Find the equation(s) of all vertical asymptotes.
22. Find all holes and vertical asymptote(s) for the graph of $g(x)=\frac{\left(x^{2}+4 x\right)(x-8)}{x^{2}\left(x^{2}+2 x-8\right)}$ and determine the behavior of the function near the vertical asymptotes.

