Spring 2012 Math 151

Week in Review \# 4
sections 3.2, 3.3, 3.4
courtesy: Joe Kahlig

Section 3.2

Find the derivative of these functions.

1. $y=\pi^{5}$
2. $y=x^{3}+5 x+10$
3. $y=\sqrt[4]{x^{3}}+\sqrt{x^{5}}-x$
4. $y=x^{3}\left(x^{5}+2 x^{3}+7 x+5\right)$
5. $y=\frac{7}{3 x^{5}}$
6. $y=\frac{7 x^{3}-5 x+2}{x^{2}}$
7. $y=\frac{x^{3}+2}{x^{2}-5}$
8. $y=\frac{1+f(x)}{x^{3}}$, where $f(x)$ is a diffentiable function.
9. Find the equation of the tangent line to the curve $f(x)=\frac{7 x}{x+3}$ at $x=2$
10. Find the the values of x where the tangent line to the function $f(x)=x^{3}+3 x^{2}-4 x+10$ is parallel to the line $y=20 x+3$.
11. Find the point(s) on the function $f(x)=\frac{4}{x}$ where the tangent line goes thru the point $(1,-5)$.
12. Find $k^{\prime}(x)$ when $k(x)= \begin{cases}x^{3}-2 x+1 & \text { if } x<2 \\ x^{2}+5 x-9 & \text { if } x \geq 2\end{cases}$
13. Does $k^{\prime}(3)$ exist? Explain why or why not. $k(x)= \begin{cases}x^{3}-10 x+2 & \text { if } x<3 \\ 3 x^{2}-x & \text { if } x \geq 3\end{cases}$

Section 3.3

14. A partical is moving in straight line motion. Its position can be given by $s(x)=x^{3}-9 x^{2}+24 x+2$, where s is measured in meters and x is measured in seconds.
(a) At what times is the particle at rest?
(b) When in the particle moving in the positive direction?
(c) Find the total distance traveled from $x=0$ to $x=6$
(d) Find the displacement from $x=0$ to $x=6$.
15. Compute the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sin ^{2} 6 x}{5 x^{2}}$
(b) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 5 x}$
(c) $\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{\tan (4 x)}$
(d) $\lim _{x \rightarrow 5} \frac{\sin (2 x-10)}{3 x-15}$

Trig. Derivatives Rules

$$
\begin{aligned}
\frac{d}{d x} \sin (x) & =\cos (x) \\
\frac{d}{d x} \cos (x) & =-\sin (x) \\
\frac{d}{d x} \tan (x) & =\sec ^{2}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} \csc (x)=-\csc (x) \cot (x) \\
& \frac{d}{d x} \sec (x)=\sec (x) \tan (x) \\
& \frac{d}{d x} \cot (x)=-\csc ^{2}(x)
\end{aligned}
$$

$$
\frac{d}{d x} \cos (x)=-\sin (x) \quad \frac{d}{d x} \sec (x)=\sec (x) \tan (x)
$$

Find the derivative of these functions.
16. $y=\sec (x)+\cos (x)$
17. $f(x)=x^{4} \sin x$
18. $f(x)=\frac{\tan x}{1+\cos x}$
19. $y=\csc x-5 \cot x$
20. Find the equation of the tangent line for

$$
f(x)=\sec x-2 \cos x \text { at } x=\frac{\pi}{3}
$$

