## Spring 2012 Math 151

Week in Review \# 5
sections: 3.5, 3.6, 3.7
courtesy: Joe Kahlig

## Section 3.5

Problems 1-8: Find the derivative of these functions.

1. $f(x)=\left(4-3 x^{2}\right)^{4}$
2. $f(x)=\tan \sqrt{x}$
3. $f(x)=x^{2} \sqrt{2 x^{3}+1}$
4. $f(t)=\sin ^{3}(2 t-1)$
5. $f(x)=x^{2} \sec \left(5-4 x^{4}\right)$
6. $y=\left(\frac{x^{3}+5}{x^{4}+7}\right)^{4}$
7. $h(x)=\frac{2}{\sqrt{x^{3}+5}}$
8. $y=\left(x^{2}+1\right)^{4}(6-2 x)^{3}$
9. Find the equation of the tangent line to the graph of $y=5 x^{2}(4-x)^{3}$ at $x=2$

Problems $10-12$ refer to the functions $f$ and $g$ that satisfy the properties as shown in the table. Find the indicated quantity.

| $x$ | $f(x)$ | $f^{\prime}(x)$ | $g(x)$ | $g^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | -3 | 3 | 5 |
| 1 | 2 | 6 | 7 | 11 |
| 2 | -5 | 0 | 2 | 10 |
| 3 | 4 | -1 | -4 | 8 |

10. $H^{\prime}(0)$ if $H(x)=f(g(x))$
11. $J^{\prime}(\sqrt{3})$ if $J(x)=f\left(x^{2}\right)$
12. $K^{\prime}(1)$ if $K(x)=\left(x^{2}+g(3 x)\right)^{3}$

## Section 3.6

10. Find $\frac{d y}{d x}$ if $x^{4}-4 x^{2} y^{2}+y^{3}=0$
11. Find $\frac{d y}{d x}$ if $\sqrt{x^{2}+y^{2}}=3$
12. Find $\frac{d x}{d y}$ if $x \sin (y)+\cos (2 x)=\cos \left(y^{2}\right)$
13. Find $\frac{d x}{d y}$ if $4 x=\frac{3+y^{3}}{y^{2}+x}$
14. Find the equation of the line tangent to $x^{\frac{1}{3}}+y^{\frac{1}{3}}=3$ at $(1,8)$.

## Section 3.7

15. Find the unit tangent vector to the curve $\mathbf{r}=\left(t^{2}\right) \mathbf{i}+\left(3 t^{3}\right) \mathbf{j}$ at the point $(1,-3)$
16. Find a vector and a parametric equations of the line tangent to $\mathbf{r}=\left(t^{3}+2 t\right) \mathbf{i}+(4 t-5) \mathbf{j}$ at the point where $t=2$
17. The curve $\mathbf{r}=(\sin 2 t) \mathbf{i}+(\cos t) \mathbf{j}, 0 \leq t \leq 2 \pi$ crosses itself at the origin. Find the angle between the tangent vectors at this point.
18. A cannonball fired fired from a cannon has a position function given by $\mathbf{r}=(5 t) \mathbf{i}+\left(36 t-2 t^{2}\right) \mathbf{j}$, where distance is measured in feet and time is measured in seconds.
(a) Compute the velocity and speed of the cannon ball at $t=3$.
(b) With what speed does the cannon ball hit the ground?
