Spring 2012 Math 151

Week in Review \# 6
sections: 3.8, 3.9, 3.10
courtesy: Joe Kahlig

Section 3.8

1. Find $y^{\prime \prime}$ for $y=\sqrt{x^{2}+1}$
2. Find $y^{\prime}, y^{\prime \prime}$, and $y^{\prime \prime \prime}$ for $y=\frac{x^{2}}{x+1}$
3. The function g is a twice differentiable function. Find $f^{\prime \prime}$ where $f(x)=x g\left(x^{2}\right)$.
4. Find $D^{25} \cos (4 x)$
5. Suppose the position of a particle at time t is given by $\mathbf{r}=\left(4 t^{2}\right) \mathbf{i}+(\cos 2 t) \mathbf{j}$. Find the acceleration of the particle when $t=\frac{\pi}{4}$
6. Find a second degree polynomial, $p(x)$, such that $p(2)=4, p^{\prime}(2)=3$ and $p^{\prime \prime}(2)=4$

Section 3.9

7. $x(t)=t^{3}-3 t^{2}+5$ and $y(t)=2 t-7$
(a) compute $\frac{d y}{d x}$
(b) compute $\left.\frac{d x}{d y}\right|_{t=3}$
(c) compute $\left.\frac{d y}{d x}\right|_{(3,-5)}$
8. A curve is given parametrically by $x=t^{4}-4 t^{3}, y=3 t^{2}-6 t$.
(a) Find the equation of the line tangent to the curve at the point $(-16,0)$
(b) Find all the points on the curve where the tangent line is horizontal.
(c) Find all the points on the curve where the tangent line is vertical.

Section 3.10

9. The length of a rectangle is increasing at a rate of 1 feet per second, while the width is decreasing at a rate of 2 foot per second. When the length is 10 feet and the width is 8 feet, compute the rate of change of the area of the rectangle?
10. A point moves around the ellipse $4 x^{2}+9 y^{2}=75$ When the point is at $(\sqrt{3}, \sqrt{7})$, its x coordinate is increasing at a rate of 10 units per second. What is the rate of change of the y coordinate at that instant?
11. You want to fly a kite so that it is 100 ft above the ground and moving horizontally at a speed of $8 \mathrm{ft} / \mathrm{sec}$. At what rate should the string be released when 260 feet of string has been let out. Assume that there is no slack in the string.
12. A ladder 15 feet long rests against a vertical wall. If the top of the ladder slides down the wall at a speed of 1.5 feet per second, at what rate of change is the angle between the bottom of the ladder and the ground changing when the angle is $\frac{\pi}{4}$ radians? Assume that the ground is level.
13. A water tank has the shape of an inverted right circular cone of altitude 18 ft and a base radius of 6 ft . If water is being pumped into the tank at a rate of $10 \mathrm{gal} / \min \left(\approx 1.337 \mathrm{ft}^{3} / \mathrm{min}\right)$, find the rate at which the water level is rising when the water is 5 ft deep.
