Chapter F Homework Solutions

Compiled by Joe Kahlig

1. $A=P(1+r t)$
$A=5000 *\left(1+0.06 * \frac{8}{12}\right)$
Answer: $\mathrm{A}=\$ 5200$
2. $I=P r t$
$116.10=P * 0.09 * 1.5$
Answer: $\mathrm{P}=\$ 860$
3. (a) $I=P r t$
$38=600 * r * \frac{8}{12}$
$r=0.095$
Answer: 9.5\%
(b) $I=P r t$
$38=600 * r * 8$
$r=0.0079167$
Answer: 0.79167\%
4. $I=P r t$
$I=P r t$
$10000-9562.56=9562.56 * r * \frac{26}{52}$
$437.44=9562.56 * r * \frac{26}{52}$
Answer: 9.1490\%
5. (a) 7.1247%
(b) 7.3427%
6. (a) $\$ 156.80$
(b) $\$ 3843.2$
7. $\$ 482.94$
8. 35.2941%
9. $\$ 2383.33$
10. Investment \#1: 8.7% compounded annually
$\operatorname{Eff}(8.7,2)=8.889225 \%$
Investment \#2: 8.6% compounded monthly
$\operatorname{Eff}(8.6,12)=8.9472 \%$
Answer: 8.6% compunded monthly is the better investment.
11. $\operatorname{Eff}(12,4)=12.550881 \%$
12. (a) $\mathrm{N}=4^{*} 6 ; \mathrm{I}=5 ; \mathrm{PV}=-1000 ; \mathrm{PMT}=0 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=4$; Solve for FV.
Answer: \$1,347.35
(b) $\operatorname{Eff}(5,4)=5.0945 \%$
13. $\mathrm{N}=5^{*} 12 ; \quad \mathrm{PV}=-2000 ; \quad \mathrm{PMT}=0 ; \quad \mathrm{FV}=8450.5$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for I;
Answer: 29.17%
14. $\mathrm{N}=6^{*} 2 ; \mathrm{I}=4 ; \mathrm{PV}=-3400 ; \mathrm{PMT}=0 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=2 ;$ Solve for $\mathrm{FV} ; \mathrm{FV}=4312.02$;
Interest earned: $4312.02-3400=\$ 912.02$
15. $\mathrm{N}=4 * 4 ; \mathrm{I}=4.5 ; \mathrm{PMT}=0 ; \mathrm{FV}=7000 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=4 ;$ Solve for PV;
Answer: \$5,852.77
16. $\mathrm{N}=4^{*} 12 ; \quad \mathrm{I}=10 ; \quad \mathrm{PMT}=0 ; \quad \mathrm{FV}=3000 ; \quad \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PV;
Answer: \$2,014.30
17. $\mathrm{N}=3^{*} 6 ; \mathrm{I}=-15 ; \quad \mathrm{PMT}=0 ; \mathrm{FV}=375.78 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=3$; solve for PV ;
Answer: \$946.04
18. $\mathrm{N}=20^{*} 1 ; \mathrm{I}=7 ; \mathrm{PMT}=0 ; \mathrm{FV}=10000 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=1 ;$ Solve for PV ;

Answer: \$2,584.19
19. (a) $\mathrm{N}=5^{*} 12 ; \quad \mathrm{I}=12 ; \quad \mathrm{PV}=50000 ; \quad \mathrm{PMT}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$. solving gives $\mathrm{FV}=\$ 90,834.83$ Interest $=90,834.83-50,000=\$ 40,834.83$
(b) $\mathrm{N}=4^{*} 12 ; \quad \mathrm{I}=5 ; \quad \mathrm{PV}=0 ; \quad \mathrm{FV}=90834.83$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$. Solve for payment. Answer: $\$ 1,713.38$
20. (a) $\mathrm{N}=2 * 20 ; \quad \mathrm{I}=6.25 ; \quad \mathrm{PV}=0 ; \quad \mathrm{PMT}=-300$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=2$; Solve for FV ; Answer: \$23,272.27
(b) $\$ 300 * 2 * 20=\$ 12,000$
(c) $23272.27-12000=\$ 11,272.27$.
21. (a) $\mathrm{N}=3^{*} 12 ; \mathrm{I}=5 ; \quad \mathrm{PV}=0 ; \quad \mathrm{PMT}=-50 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV; Answer: $\$ 1,937.67$
(b) $1937.67-3 * 12 * 50=\$ 137.67$
22. (a) $\mathrm{N}=4^{*} 5 ; \quad \mathrm{I}=7 ; \quad \mathrm{PV}=-500 ; \quad \mathrm{Pmt}=$ solve for this; $\mathrm{Fv}=6000 ; \mathrm{P} / \mathrm{y}=\mathrm{C} / \mathrm{y}=4$ Answer: $\$ 223.30$
(b) $\mathrm{N}=15 ; \mathrm{I}=7 ; \mathrm{PV}=-500 ; \mathrm{Pmt}=-223.30 ; \mathrm{Fv}=$ solve for this; $P / y=C / y=4$
Answer: \$4,441.24
(c) Method 1: balance after 15 payments $=4441.24$ balance after 14 payments $=4145.40$
Answer: 4441.24-4145.40-223.30 $=72.54$

Method 2: Balance after 14 payments * i
Answer: $4145.40 * 0.07 / 4=\$ 72.54$
(d) Balance after 12 th period (end of 3rd year) $=$ 3568.89
balance after 8 th period (end of 2 rd year) $=2474.17$
payments made in the 3rd year: $223.30 * 4=893.20$
Answer: $3568.89-2474.17-893.20=201.52$
23. $\mathrm{N}=4^{*} 5 ; \quad \mathrm{I}=6 ; \quad \mathrm{PV}=-500 ; \quad \mathrm{PMT}=-150 ; \quad \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=4$; Solve for FV;

Answer: \$4141.98
24. $\mathrm{N}=2^{*} 10 ; \mathrm{I}=8 ; \mathrm{PV}=0 ; \mathrm{PMT}=-1000 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=2 ;$ Solve for FV;
Answer: $\$ 29,778.08$
25. (a) $\mathrm{N}=4^{*} 12 ; \quad \mathrm{I}=7 ; \quad \mathrm{PMT}=-100 ; \quad \mathrm{FV}=7000$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PV ;
Answer: \$1,118.77
(b) $\mathrm{N}=20 ; \quad \mathrm{I}=7 ; \quad \mathrm{PV}=-1118.77 ; \quad \mathrm{PMT}=-100$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV;
Answer: $\$ 3,371.60$
(c) Method 1: balance after 20 payments $=3371.60$ balance after 19 payments $=3252.62$
Answer: $3371.60-3252.62-100=18.98$

Method 2: balance after 19 payments * i
Answer: $3252.62 * 0.07 / 12=\$ 18.97$ (difference due to rounding)
(d) balance after 36th period (end of 3rd year) $=5372.37$
balance after 24th period(end of 2rd year) $=3854.47$
payments made in the 3rd year: $100 * 12=1200$
Answer: $5372.37-3854.47-1200=317.90$
26. $\mathrm{N}=5^{*} 12 ; \mathrm{I}=7 ; \mathrm{PV}=-30000 ; \mathrm{FV}=100000 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PMT;

Answer: \$802.75
27. (a) $\mathrm{N}=16^{*} 12 ; \quad \mathrm{I}=6.4 ; \quad \mathrm{PMT}=1500 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PV ;
Answer: \$17,9962.30
(b) $\mathrm{N}=16^{*} 12 ; \quad \mathrm{I}=3.4 ; \quad \mathrm{PMT}=1500 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PV ;
Answer: $\$ 22,0281.51$
(c) total of payments sold: $1500 * 12 * 16=\$ 288000$

He would have recieved $288000-179962.30=$ $\$ 108037.7$ if he didn't sell.
28. 78 payments is $78 / 4=19.5$ years
(a) $\mathrm{N}=19.5^{*} 4 ; \quad \mathrm{I}=2.5 ; \quad \mathrm{PMT}=6000 ; \quad \mathrm{FV}=0$ $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=4$; Solve for PV;

Answer: \$369511.36
(b) $\mathrm{N}=19.5^{*} 4 ; \quad \mathrm{I}=5.7 ; \quad \mathrm{PMT}=6000 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=4$; Solve for PV ;
Answer: \$281407.72
(c) total of payments sold: $6000 * 78=\$ 468000$

You would have recieved $468000-369511.36=$ $\$ 98488.64$ if he didn't sell.
29. (a) End of 5 years:
$\mathrm{N}=5^{*} 12 ; \quad \mathrm{I}=5 ; \quad \mathrm{PV}=-1000 ; \quad \mathrm{PMT}=-75$;
$\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV;
Balance at the end of the 5 years is $\$ 6,383.81$
At end of next 6 years:
$\mathrm{N}=6^{*} 12 ; \quad \mathrm{I}=6.25 ; \quad \mathrm{PV}=-6383.81 ; \quad \mathrm{PMT}=-75$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV;
Balance at the end of the next 6 years is $\$ 15,810.85$ At the end:
$\mathrm{N}=4^{*} 12 ; \quad \mathrm{I}=5 ; \quad \mathrm{PV}=-15810.85 ; \quad \mathrm{PMT}=-75$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV ;
Answer: $\$ 25,043.49$
(b) amount deposited: $=1000+75^{*} 12^{*} 15=145000$

Interest $=25043.49-145000=\$ 10,543.49$
30. $\mathrm{N}=4^{*} 4 ; \mathrm{I}=8 ; \mathrm{PMT}=1000 ; \mathrm{FV}=0 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=4$; Solve for PV;

Answer: \$1,3577.71
31. $\mathrm{N}=5^{*} 12 ; \mathrm{I}=9 ; \mathrm{PV}=20000 ; \mathrm{FV}=0 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PMT;

Answer: $\$ 415.17$
32. (a) $\mathrm{N}=6^{*} 12$; $\mathrm{I}=18 \quad ; \quad \mathrm{PV}=16000 \quad ; \quad \mathrm{FV}=0 \quad$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PMT;
Answer: $\$ 364.92$
(b) amount paid $=12^{*} 6^{*} 364.92=\$ 26,274.24$

Interest $=26274.24-16000=\$ 10,274.24$
(c) amortization schedule

period	interest owed	payment	amt. toward principal	outstanding principal
0	-	-	-	16000
1	240	364.92	124.92	15875.08
2	238.13	364.92	126.79	15748.29

33. amortization schedule

period	interest owed	payment	amt. toward principal	outstanding principal
0	-	-	-	8000
1	100	300	200	7800
2	97.5	300	202.50	7597.5

34. (a) $\mathrm{N}=1.5^{*} 12 ; \quad \mathrm{I}=19.2 ; \quad \mathrm{PV}=800 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PMT; Answer: \$51.50
(b) amount paid $=1.5^{*} 12^{*} 51.50=\$ 927.00$ interest $=927.00-800=\$ 127$
(c) amortization schedule

period	interest owed	payment	amt. toward principal	outstanding principal
0	-	-	-	800
1	12.8	51.50	38.7	761.30
2	12.18	51.50	39.32	721.98
3	11.55	51.50	39.95	682.03
4	10.91	51.50	40.59	641.44

35. (a) $\mathrm{N}=45^{*} 12 ; \quad \mathrm{I}=6 ; \quad \mathrm{PV}=-1000 ; \quad \mathrm{PMT}=-150$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; solve for FV Answer: \$428,178.85
(b) $\mathrm{N}=15^{*} 12 ; \quad \mathrm{I}=6 ; \quad \mathrm{PV}=428178.85 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; solve for PMT
Answer: $\$ 3613.22$
36. First figure out how much money is needed in the account so he can receive these payments.
$\mathrm{N}=15^{*} 4 ; \mathrm{I}=6 ; \mathrm{PMT}=6000 ; \mathrm{FV}=0 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=4$; Solve for PV; To receive these payments he needs $236,281.61$ in the account when he turns 65.
Now figure out the payments to get to this amount. $\mathrm{N}=40^{*} 4 ; \mathrm{I}=6 ; \quad \mathrm{PV}=0 ; \quad \mathrm{FV}=236281.61 ; \quad \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=4$; Solve for PMT; He needs to make quarterly deposits of 360.61
37. (a) $\mathrm{I}=8.5 ; \quad \mathrm{PV}=-210000 ; \quad \mathrm{PMT}=2000 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for N ;
$\mathrm{N}=192.906$. this says that there are 192 full months and 0.906 of a month. Every month you withdraw $\$ 2000$,
Answer: 192 full payments.
(b) Method 1:
$\mathrm{N}=1 ; \quad \mathrm{I}=8.5 ; \quad \mathrm{PV}=-210000 ; \quad \mathrm{FV}=210000$;
$\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for Pmt;
$\mathrm{Pmt}=1487.50$
Method 2: ballance * i
$210000 * 0.085 / 12=1487.5$
Answer: \$1,487.5
38. bob borrows $\$ 285,000-\$ 60,000=\$ 225,000$
(a) $\mathrm{N}=20^{*} 12 ; \quad \mathrm{I}=9.5 ; \quad \mathrm{PV}=225000 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for Pmt;
Answer: $\$ 2097.30$
(b) $\mathrm{N}=5^{*} 12 ; \quad \mathrm{I}=9.5 ; \quad \mathrm{PV}=225000 ; \quad \mathrm{PMT}=-2097.30$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV ;
Answer: $\$ 200846.75$
(c) $\mathrm{N}=12^{*} 12 ; \quad \mathrm{I}=9.5 ; \quad \mathrm{PV}=225000 ; \quad \mathrm{PMT}=-2097.30$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV;
Answer:\$14,0654.00
39. Setp 1: Find the payments.
$\mathrm{N}=6^{*} 12 ; \mathrm{I}=3 ; \mathrm{PV}=30000 ; \mathrm{FV}=0 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for Pmt; Pmt $=455.81$

Step 2: Find the future ballance.
$\mathrm{N}=3^{*} 12 ; \quad \mathrm{I}=3 ; \quad \mathrm{PV}=30000 ; \quad \mathrm{PMT}=-455.81$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV ;
Answer: \$15,673.71
0. $\mathrm{N}=12^{*} 4 ; \mathrm{I}=5 ; \mathrm{PV}=28000 ; \mathrm{FV}=-9000 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$;

Solve for PMT
Answer: \$475.06

1. $\mathrm{N}=5^{*} 12 ; \mathrm{I}=4.5 ; \mathrm{Pmt}=800 ; \mathrm{Fv}=0 ; \mathrm{P} / \mathrm{y}=\mathrm{C} / \mathrm{y}=12$; Solve for PV
Answer:\$42911.50
2. $\mathrm{N}=12^{*} 3 ; \mathrm{I}=15 ; \mathrm{PV}=$ solve for this; $\mathrm{Pmt}=-30 ; \mathrm{Fv}=0 ; \mathrm{P} / \mathrm{y}$ $=\mathrm{C} / \mathrm{y}=12$;
You have borrowed $\$ 865.42$ and when you add this to the down payment you get the price.
Answer:\$1465.42
3. $\mathrm{N}=12^{*} 3 ; \mathrm{I}=8 ; \mathrm{PV}=$ solve for this; $\mathrm{Pmt}=-75 ; \mathrm{Fv}=0 ; \mathrm{P} / \mathrm{y}$ $=\mathrm{C} / \mathrm{y}=12$;
You have borrowed $\$ 2393.39$ and when you add this to the down payment you get the price.
Answer: \$3193.39
4. (a) $\mathrm{N}=4^{*} 12 ; \quad \mathrm{I} \%=6.5 ; \quad \mathrm{PMT}=-625 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; solve for PV .
He still owes $=\$ 26,483.25$
(b) $\mathrm{N}=8.5^{*} 4 ; \quad \mathrm{I} \%=4.5 ; \quad \mathrm{PMT}=-1500 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=4$; solve for PV .
He still owes $=\$ 42,185.04$
(c) Consolidated loan
$\mathrm{N}=6^{*} 12$
$\mathrm{I}=5.1 \%$
$\mathrm{PV}=26483.25+42185.04$
$\mathrm{PMT}=$ solve
$\mathrm{FV}=0$
$\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$
Monthly Payment $=\$ 1,109.09$
(d) Pays back with the consolidated loan:
$1109.09^{*} 12^{*} 6=79854.48$
Pays back on original loans:
Loan 1: $625^{*} 4 * 12=30000$
Loan 2: $1500 * 4 * 8.5=51000$
Total paid back: $\$ 81,000$
Bob will save $81,000-79,854.48=\$ 1,145.52$
5. down payment $=185000 * 0.08=14800$
(a) $\mathrm{N}=12^{*} 15 ; \quad \mathrm{I}=6.36 ; \quad \mathrm{PV}=170200 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PMT
Monthly payment: \$ 1,469.56
Total Paid $=1469.56^{*} 12^{*} 15=264520.8$
Interest owed: $264520.8-170200=\$ 94,320.80$
(b) Monthly payment: $\$ 1,060.16$

Interest owed: $\$ 211,457.60$
(c) Amortization schedule

period	interest owed	payment	amt. toward principal	outstanding principal
0	-	-	-	170200
1	902.06	1060.16	158.10	170041.9
2	901.22	1060.16	158.94	169882.96
3	900.38	1060.16	159.78	169723.18

(d) still owe after 8 years:
$\mathrm{N}=12^{*} 8 ; \quad \mathrm{I}=6.36 ; \quad \mathrm{PV}=170200 ; \quad \mathrm{PMT}=-1060.16 ;$
$\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV
still owe $=150480.43$
equity $=185000-150480.43=\$ 34519.57$
46. (a) $\mathrm{N}=12^{*} 5 ; \quad \mathrm{I}=5.75 ; \quad \mathrm{PV}=146000 ; \quad \mathrm{PMT}=-1100$;
$\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV
still owe $=118241.67$
Equity $=146000-118241.67=\$ 27758.33$
(b) $\mathrm{N}=12^{*} 10 ; \quad \mathrm{I}=5.75 ; \quad \mathrm{PV}=146000 ; \quad \mathrm{PMT}=-1100$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV
still owe $=81262.71$
Equity $=146000-81262.71=\$ 64737.29$
47. max payment:
$\mathrm{N}=25^{*} 12 ; \quad \mathrm{I} \%=5.45 ; \quad \mathrm{PMT}=-1275 ; \quad \mathrm{FV}=0$;
$\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; solve for PV .
amount borrowed $=\$ 208,638.41$ house price $=$
$\$ 208,638.41+\$ 20,000=\$ 228,638.41$
Min Payment:
$\mathrm{N}=25^{*} 12 ; \mathrm{I} \%=5.45 ; \mathrm{PMT}=-900 ; \mathrm{FV}=0 ; \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; solve for PV .
amount borrowed $=\$ 147,274.17$ house price $=$ $\$ 147,274.17+\$ 20,000=\$ 167,274.17$
Answer: between $\$ 167,274.17$ and $\$ 228,638.41$
48. (a) First figure out how much he still owes on the loan. still owe: $\$ 74997.89$
now solve for the new payments with a 15 year loan. don't forget to add the fee to what he is borrowing. new payments: $\$ 629.14$
(b) Figure out what will be paid out for the remainder of the loan with both options.
no refinance: $568.83 * 12 * 21=143345.16$
refinance: $629.14^{*} 12^{*} 15=113245.2$
Phillip will save $\$ 30,099.96$ by refinancing.
49. (a) $\mathrm{I}=18 ; \quad \mathrm{PV}=2000 ; \quad \mathrm{PMT}=-35 ; \quad \mathrm{FV}=0$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for N and you get 130.697. So it will take 131 payments to pay off the balance, i.e. 10 years and 11 months.
(b) $\mathrm{N}=130 ; \quad \mathrm{I}=18 ; \quad \mathrm{PV}=2000 ; \quad \mathrm{PMT}=-35$; $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for FV and you get that the balance will be $\$ 24.12$. But, you will still owe one more month of interest on this amount at the end of the next month.
$\mathrm{N}=1 ; ~ \mathrm{I}=18 ; ~ \mathrm{PV}=24.12 ; \quad \mathrm{FV}=0, \mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}=12$; Solve for PMT and you get $\$ 24.48$ which is your last payment to pay off the credit card.
Total paid: $35(130)+24.48(1)=\$ 4574.48$
Interest paid: $4574.48-2000=\$ 2574.48$
(c) 5 years and 2 months.

Interest paid: $\$ 1077.24$

