Chapter 3 Homework Solutions

Compiled by Joe Kahlig

1. (a) You are counting the number of games and there are a limited number of games in a tennis match. Answer: Finite discrete
(b) your counting the nubmer of tickets. Answer: Infinite discrete
(c) Time is an interval and it doesn't skip values.

Answer: Continuous
(d) The number may be very large(hopefully), but it is still only a fixed number.
Answer: Finite discrete
(e) Temperature is an interval and it doesn't skip values.
Answer: Continuous
2. (a) There are $52-13=39$ non-heart cards in a deck, so the maximum number of cards you could draw is 39 without drawing a heart. So the worst case scenario is 40 cards drawn.
Answer: Finite discrete.
Values: $\mathrm{X}=1,2, \ldots, 40$
(b) Continuous

Values: $\{x=$ time in hours $\mid 0 \leq X \leq 24\}$
(c) You could always roll a one, so it might not happen that you roll a six.
Answer: Infinite discrete
Values: $X=1,2,3,4, \ldots$
3. The areas of the rectangles must add to one since the rectangles represent probability. The missing rectangle has an area of 0.15.

Answer: $0.15+0.2+0.3=0.65$ or $1-0.1-0.25=0.065$
4. Let $P(X=6)=J$ then $P(X=3)=2 J$
$0.1+0.25+P(X=3)+0.2+0.15+P(X+6)=1$ (from the histogram).

```
\(P(X=3)+P(X+6)=0.3\)
\(2 J+J=0.3\)
and get \(J=0.1\)
```

Answer: $0.45=P(X=4)+P(X=5)+P(X=6)$
5. (a) Divide the frequency by the total number of students who have waited to get relative frequency (or probability).

students	0	1	2	4	6
prob.	$\frac{4}{25}$	$\frac{10}{25}$	$\frac{5}{25}$	$\frac{4}{25}$	$\frac{2}{25}$

(b) probability histogram

6. There are a total of 7 cards that will be made. Three of them will have a word with three letters: Get, Its, fun.

Answer:
(a)

letters	3	4	5	6
prob.	$\frac{3}{7}$	$\frac{1}{7}$	$\frac{2}{7}$	$\frac{1}{7}$

(b) probability histogram

7. (a) There can be different answers depending where your intervals start.

speed (x)	freq
$25 \leq x<30$	6
$30 \leq x<35$	7
$35 \leq x<40$	9
$40 \leq x<45$	8
$45 \leq x<50$	5
$50 \leq x<55$	5

(b) prob dist.

speed(x)	prob
$25 \leq x<30$	$6 / 40$
$30 \leq x<35$	$7 / 40$
$35 \leq x<40$	$9 / 40$
$40 \leq x<45$	$8 / 40$
$45 \leq x<50$	$5 / 40$
$50 \leq x<55$	$5 / 40$

8. (a) frequency table

grade(x)	freq
$90 \leq x \leq 99$	10
$80 \leq x \leq 89$	11
$70 \leq x \leq 79$	11
$60 \leq x \leq 69$	10
$50 \leq x \leq 59$	7
$40 \leq x \leq 49$	4
$30 \leq x \leq 39$	3

(b) prob dist.

grade(x)	freq
$90 \leq x \leq 99$	$10 / 56$
$80 \leq x \leq 89$	$11 / 56$
$70 \leq x \leq 79$	$11 / 56$
$60 \leq x \leq 69$	$10 / 56$
$50 \leq x \leq 59$	$7 / 56$
$40 \leq x \leq 49$	$4 / 56$
$30 \leq x \leq 39$	$3 / 56$

9. Remember that the remainder is what is left over after performing long division(by hand). For example: 7 divide by 3 has a remainder of 1 since 3 goies into 7 two times(this gives $3 * 2=6$) and 1 will be left over.

remainder	0	1	2
prob.	$\frac{2}{8}$	$\frac{3}{8}$	$\frac{3}{8}$

10. The tree shows the experiment. Notice the tree stops on the third level since either a head is tossed or the coin has been tossed three times.

Use the branches to get the probability.
Answer:

tosses	1	2	3
prob.	$\frac{1}{3}$	$\frac{2}{9}$	$\frac{4}{9}$

11. (a) $P(X=0)=\frac{C(4,0) C(48,3)}{C(52,3)}$
(b) $P(X=2)=\frac{C(4,2) C(48,1)}{C(52,3)}$
12. (a) $P(X=2)=\frac{C(5,2) * C(7,1)}{C(12,3)}=\frac{70}{220}$
(b) $P(X \leq 2)=$

$$
\begin{aligned}
& \frac{C(5,0) * C(7,3)}{C(12,3)}+\frac{C(5,1) * C(7,2)}{C(12,3)}+\frac{C(5,2) * C(7,1)}{C(12,3)}=\frac{210}{220} \\
& \text { or } \\
& P(X \leq 2)=1-P(X=3)=1-\frac{C(5,3) * C(7,0)}{C(12,3)}
\end{aligned}
$$

13. (a) $E(x)=1 * 0.3+2 * 0.15+4 * 0.35+5 * 0.2=3$
(b) histogram

14. To calculate $P(X=70)$ remember that the probabilities must add to 1 .
$E(X)=30 * 0.31+32 * 0.25+46 * 0.29+49 * 0.06+63 *$ $0.04+70 * 0.05=39.6$
15. (a) Write out the cards and give the score to each card. Note: the order of the numbers is not important.

Card	Score	Card	Score	Card	Score
1,2	1	1,3	1	1,4	10
1,5	1	2,3	10	2,4	2
2,5	2	3,4	3	3,5	3
4,5	4				

Answer:

score	1	2	3	4	10
probability	$\frac{3}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{1}{10}$	$\frac{2}{10}$

(b) $E(x)=1 * \frac{3}{10}+2 * \frac{2}{10}+3 * \frac{2}{10}+4 * \frac{1}{10}+10 * \frac{2}{10}=3.7$
16. The probabilities may be computed using a tree or combinations.
(a)

hearts	0	1	2
probability	$\frac{19}{34}$	$\frac{13}{34}$	$\frac{2}{34}$

(b) $E(x)=0 * \frac{19}{34}+1 * \frac{13}{34}+2 * \frac{2}{34}=0.5$
17. Use a dice chart to find the probabilities.

\left.| Red Die | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 2 | 3 | 4 | 5 |$\right) 6$.

(a)

hearts	1	2	3	4	5	6
probability	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

(b) $E(x)=1 * \frac{1}{36}+2 * \frac{3}{36}+3 * \frac{5}{36}+4 * \frac{7}{36}+5 * \frac{9}{36}+6 * \frac{11}{36}$ $E(X)=4.47222$
18. Note: X is the net winnings.
(a)

X	1999	499	99	24	-1
probability	$\frac{1}{500}$	$\frac{1}{500}$	$\frac{3}{500}$	$\frac{10}{500}$	$\frac{485}{500}$

(b) $\underset{485}{E}(x)=\frac{1}{500} * 1999+\frac{1}{500} * 499+\frac{3}{500} * 99+\frac{10}{500} * 24+$ $\frac{485}{500} *(-1)=5.1$
19. $\mathrm{X}=$ profit on a chip.

X	18	-23
prob.	0.95	0.05

Answer: $E(x)=18 * 0.95+(-23) * 0.05=15.95$
20. X is your net winnings.

hearts	-5	-4	-1	4
probability	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

$E(X)=(-5) * 1 / 8+(-4) * 3 / 8+(-1) * 3 / 8+4 * 1 / 8$ $E(X)=-2$
21. Use a tree to set up the probability distribution.

(b) $E(x)=-.43$ so the game is not fair.
22. Use a tree or combinations to find the probabilities.

X is your net winnings and A be the cost of the game.

X	1 red $4-\mathrm{A}$	2 red $3 \mathrm{~A}-\mathrm{A}$	0 red $0-\mathrm{A}$
prob	$\frac{20}{36}$	$\frac{6}{36}$	$\frac{10}{36}$

If the game is fair then $E(x)=0$
$0=\frac{20}{36} *(4-A)+\frac{6}{36} *(2 A)+\frac{10}{36} *(-A)$
$0=20(4-A)+12 A-10 A$
$18 A=80$
$A=\frac{80}{18}=4.44$
So to make it fair(or as fair as possible) charge $\$ 4.44$.
23. X is the your net winnings.

X	2	1	-3
prob.	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{4}{6}$

(a) -1.5
(b) No, the expected winnings are negative. For this problem the game favors the person running the game.
(c) Let $A=$ Price of the game, then solve the following equaiton,

X	$7-A$	$6-A$	$2-A$
prob.	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{4}{6}$

$0=(7-A) * 1 / 6+(6-A) * 1 / 6+(2-A) * 4 / 6$
$0=(7-A)+(6-A)+(2-A A) * 4$
$A=3.5$

Answer: $\$ 3.50$
24. Note: expected value is an average so do not round the answer.
(a) $E(X)=n * p=80 * 0.18=14.4$
(b) $E(X)=n * p=80 * 0.82=65.6$
25. expected number of questions correct: $10 * \frac{1}{6}=$ 1.66666667

Expected grade is $10 * 1.6667=16.6667$
26. $E(x)=75 * 0.05=3.75$ Note: expected value is an average so do not round the answer.
27. $E(x)=6 * \frac{20}{52}=2.30769$
28. Mean $=4.9$

Median $=5$
Mode $=6$
29. Mean $=21.31818$

Median $=20.5$
Mode $=19$ and 24
30. The fifth score is less than or equal to 82 since 82 is the median and there are 2 scores that are above this number.
31. Answers will vary. I used the midpoint of each interval $\frac{2.5 * 8+8.5 * 12+15 * 24+22 * 35}{8+12+24+35}=15.8481$
32. Answers will vary. used the median of each interval.

Estimated Mean: 30.96
33. Enter the x-value in list 1 and the frequency in list 2 . use the command: 1-Var Stats $\mathrm{L}_{1}, \mathrm{~L}_{2}$
(a) mean: $\bar{x}=3.75$
median $=4$
mode $=4$
standard deviation: $\sigma_{x}=1.25$
variance: $\left(\sigma_{x}\right)^{2}=1.5625$
(b) mean: $\bar{x}=7.3333$
median $=4$
mode $=1$ and 15
standard deviation: $\sigma_{x}=6.315765$
variance: $\left(\sigma_{x}\right)^{2}=39.88888754$
34. Enter the x -value in list 1 and the frequency in list 2 . use the command: 1-Var Stats $\mathrm{L}_{1}, \mathrm{~L}_{2}$
(a) mean: $\bar{x}=41.8023$
(b) median $=31.5$
(c) mode $=90$
(d) standard deviation: $S_{x}=32.8697$
(e) variance: $\left(S_{x}\right)^{2}=1080.4171$
(f) $Q_{1}=12$ At least 25% of the people surveyed drink 12 or fewer Dr. Peppers during the semester.
$Q_{2}=$ median $=31.5$ At least 50% of the people surveyed drink 31.5 or fewer Dr. Peppers during the semester.
$Q_{3}=90$ At least 75% of the people surveyed drink 90 or fewer Dr. Peppers during the semester.
35. Answers will vary. I used the middle of each interval.
(a) mean $=11.42333$
(b) standard deviation: $\sigma_{x}=6.561437$
(c) $11-20$
36. Enter the age in list 1 and the frequency in list 2 . use the command: 1-Var Stats $\mathrm{L}_{1}, \mathrm{~L}_{2}$
(a) Mean $=2.6225$

Median $=3$
Mode $=3$
(b) $Q_{1}=2$ At least 25% of the cars are 2 years or younger.
$Q_{2}=$ median $=3$ At least 50% of the cars are 3 years or younger.
$Q_{3}=3$ At least 75% of the cars are 3 years or younger.
(c) Sample since there are more than 2000 cars on campus.
(d) $S_{x}=1.623672352$
(e) mean $+S_{x}=4.2462$
mean $-S_{x}=0.9988$
Between 0.9988 years and 4.2462 years
(f) mean $+1.6 * S_{x}=5.2204$
mean $-1.6 * S_{x}=0.0246$
Between 0.0246 years and 5.2204 years
37. Create a probability distribution from the histogram. Enter the x -values in list 1 and the probability in list 2. use the command: 1-Var Stats $\mathrm{L}_{1}, \mathrm{~L}_{2}$
(a) $E(x)=\bar{x}=3.5$
(b) $\sigma_{x}=1.62788206$
(c) varience $=\left(\sigma_{x}\right)^{2}=2.650000001$
38. $\mathrm{E}(\mathrm{X})=n * p=8 * \frac{1}{5}=1.6$
st. dev. $=\sqrt{n * p * q}=\sqrt{8 * \frac{1}{5} * \frac{4}{5}}=1.13137$
39. $\sqrt{20 * \frac{2}{20} * \frac{18}{20}}=1.9365$
40. (a) $\mu=80 * .15=12$
$\sigma=\sqrt{80 * .15 * .85}=3.1937$
(b) within 1 standard deviation means
$\mu-1 * \sigma \leq X \leq \mu+1 * \sigma$
$8.806 \leq X \leq 15.19$ or
$x=9,10,11,12,13,14,15$
binomcdf($80,0.15,15$) - binomcdf($80,0.15,8$)
Answer: 0.7283
(c) $\mathrm{X}=7,8,9, \ldots, 17$
binomcdf($80,0.15,17$) - binomcdf($80,0.15,6$)
Answer: 0.9175
41. Use Chebychev's inequality.
$\mu+k \sigma=27.2$
$20+k * 2.4=27.2$
$k=3$
$P(12.8 \leq X \leq 27.2) \geq 1-\frac{1}{3^{2}}=\frac{8}{9}$
42. Use Chebychev's inequality.
$\mu+k \sigma=37.3$
$35+k * 4.5=37.3$
$k=0.6$
$P(32.3 \leq X \leq 37.7) \geq 1-\frac{1}{0.6^{2}}=-1.77777$
Note: Chebyshev's inequality doesn't really give useful information for this problem.
43. Use Chebychev's inequality.
(a) $\mu+k \sigma=213$
$213=205+2 * k$
$k=4$
$P(197 \leq X \leq 213) \geq 1-\frac{1}{4^{2}}$
Answer: $\geq .9375=\frac{15}{16}$
(b) Want to compute: $P(X<185)+P(X>225)$
notice that:
$P(X<185)+P(X>225)=1-P(185 \leq X \leq 225)$
$\mu+k \sigma=225$
$225=205+2 k$
$k=10$
$P(185 \leq X \leq 225) \geq 1-\frac{1}{10^{2}}=0.99$
Answer: ≤ 0.01
44. Use Chebychev's inequality.
$\mu+k \sigma=106$
$100+k * 2.8=106$
$k=\frac{15}{7}$
$P(94 \leq X \leq 106) \geq 1-\frac{1}{(15 / 7)^{2}}=0.782222$
We would expect at least $0.78222 * 10000$ or at least 7822 boxes to have between 94 and 106 paperclips.
45. (a) normalcdf $(1.25,1 \mathrm{E} 99,0,1)=0.1056$
(b) normalcdf $(-1,1.5,0,1)=0.7745$
(c) normalcdf($-0.75,1 \mathrm{E} 99,0,1$) $=0.7734$
(d) normalcdf $(-1 \mathrm{E} 99,2.50,1)=0.9938$
(e) 0 , since z is a continuous random variable.
(f) normalcdf(-1 E99, $-1,0,1$) + normalcdf(1.15,1E99,0,1)
Answer: 0.2837
(g) $\mathrm{A}=\operatorname{invnorm}(0.647,0,1)=0.3772$
(h) $\mathrm{J}=\operatorname{invNorm}(1-.791,0,1)=-0.8099$
46. area not between A and $-A$ is $1-0.76=0.24$

Area at each end of the graph is $\frac{0.24}{2}=0.12$
$\mathrm{A}=\operatorname{invnorm}(0.12+0.76,0,1)=1.174986$
47. (a) normalcdf $(111,135,100,20)=0.268478$
(b) normalcdf $(85,120,100,20)=0.614717$
(c) $\operatorname{normalcdf}(75,1 \mathrm{E} 99,100,20)=0.89435$
(d) $\mathrm{A}=\operatorname{invnorm}(0.42,100,20)=95.96213$
48. (a) normalcdf $(144,156,140,8)=0.285787$
(b) normalcdf $(130,156,140,8)=0.8716$
(c) normalcdf($-1 \mathrm{E} 99,148,140,8)=0.8413447$
(d) zero since X is a ocntinuous random variable
(e) $\mathrm{B}=\operatorname{invnorm}(1-.37,140,8)=142.6548268$
49. (a) $\mu+1.5 \sigma=65+1.5 * 6=74$
$\mu-1.5 \sigma=65-1.5 * 6=56$
normalcdf($56,74,65,6)=0.8663855$
Answer: 86.63855\%
(b) $\mu+2 \sigma=65+2 * 6=77$
normalcdf($77,1 \mathrm{E} 99,65,6)=0.02275$
Answer: 2.275%
50. area to the left of $\mathrm{X}=50$
normalcdf $(-1 \mathrm{E} 99,50,50,10)=0.5$
Area to the right of B is
$1-0.5-0.48=0.02$
Area to the left of A is $1-.75-.02=0.23$
Answer: $\mathrm{A}=\operatorname{invnorm}(0.23,50,10)=42.6115$
51. st. $\mathrm{dev}=\sqrt{v a r}=\sqrt{225}=15$
area to the left of $\mathrm{X}=35$
normalcdf $(-1 \mathrm{E} 99,35,45,15)=0.2525$

Answer: $\mathrm{A}=\operatorname{invnorm}(0.2525+0.4,45,15)=50.8809$
52. $\operatorname{normalcdf}(-1 \mathrm{E} 99,112,120,10)=0.2111855$
53. (a) normalcdf(27000,1E99,24000,1400) $=0.01606$
(b) normalcdf $(22500,28000,24000,1400)=0.85587$
(c) $\operatorname{binompdf}(4,0.85587,2)=0.091301$
54. $\sigma=15 * 24=360$
(a) normalcdf($8250,1 \mathrm{E} 99,8000,360)=0.2437$
(b) binompdf $(4,0.2437,4)=0.003527$
(c) $400 * 0.2437=97.48$
approximately 97
55. (a) normalcdf($28,1 \mathrm{E} 99,20,5)=0.0548$
(b) since the random variable is continuous, the probability that it takes exactly 20 minutes is zero.
(c) normalcdf $(16,26,20,5)=0.6731$
$500 * 0.6731=336.55$
approximately 336 or 337 .
56. invnorm $(0.8,10,2.5)=12.10405$ minutes
57. (a) normalcdf(9.2,1E99,7.4,1.2) $=0.0668$
(b) 0 , since this is a continous random variable
58. (a) minimum length $=1.001-2 * 0.002=0.997$ maximum length $==1.001+2 * 0.002=1.005$
(b) normalcdf($0.997,1.005,1.001,0.002)=0.9545$ Accept $=95.45 \%$

Answer: 100-95.45 = 4.55\%
(c) $10000 * 0.0455=455$.
59. (a) normalcdf(30,1E99,28.6, 2.3) $=0.2714$
(b) 0 , since this is a continous random variable
(c) normalcdf $(28,32,28.6,2.3)=0.5332$
60. (a) normalcdf(14,1E99, 14.1, 0.2$)=0.6915$
(b) normalcdf $(13.8,14.5,14.1,0.2)=0.9104$
(c) $\mu+1.5 \sigma=14.1+1.5 * 0.2=14.4$
$\mu-1.5 \sigma=14-1.5 * 0.2=13.8$
normalcdf($13.8,14.4,14.1,0.2)=0.866386$
Answser: 86.6386\%
61. (a) normalcdf($144,1 \mathrm{E} 99,128,14)=0.1265$
(b) noramlcdf $(-1 \mathrm{E} 99,108,128,14)=0.07656$
$250 * 0.07656=19.14$
Answer: about 19
62. (a) normalcdf($45,1 \mathrm{E} 99,42,2)=0.0668$
(b) normalcdf($-1 \mathrm{E} 99,36,42,2)=0.0013$

Answer: 0.13%
63. normalcdf $(2.2,1 \mathrm{E} 99,1.5,0.4)=0.040059$ $120 * 0.040059=4.807$

Answer: approximately 5
64. invnorm $(0.03,20,15 / 12)=17.649$ years
65. $\mathrm{A}=\operatorname{invnorm}(1-0.08,63,15)=84.076$
$\mathrm{B}=\operatorname{invnorm}(1-0.08-0.18,63,15)=72.65$
$\mathrm{C}=\operatorname{invnorm}(1-0.08-0.18-0.25,63,15)=62.624$

