## Chapter 3 Homework Solutions

Compiled by Joe Kahlig

- (a) You are counting the number of games and there are a limited number of games in a tennis match. Answer: Finite discrete
  - (b) your counting the nubmer of tickets. Answer: Infinite discrete
  - (c) Time is an interval and it doesn't skip values. Answer: Continuous
  - (d) The number may be very large(hopefully), but it is still only a fixed number. Answer: Finite discrete
  - (e) Temperature is an interval and it doesn't skip values. Answer: Continuous
- 2. (a) There are 52 13 = 39 non-heart cards in a deck, so the maximum number of cards you could draw is 39 without drawing a heart. So the worst case scenario is 40 cards drawn.

Answer: Finite discrete. Values: X = 1, 2, ..., 40

- (b) Continuous Values:  $\{x = \text{time in hours } | 0 \le X \le 24\}$
- (c) You could always roll a one, so it might not happen that you roll a six.
  Answer: Infinite discrete Values: X = 1, 2, 3, 4, ...
- 3. The areas of the rectangles must add to one since the rectangles represent probability. The missing rectangle has an area of 0.15.

Answer: 0.15 + 0.2 + 0.3 = 0.65 or 1 - 0.1 - 0.25 = 0.065

4. Let P(X = 6) = J then P(X = 3) = 2J 0.1 + 0.25 + P(X = 3) + 0.2 + 0.15 + P(X + 6) = 1 (from the histogram). P(X = 3) + P(X + 6) = 0.3 2J + J = 0.3and get J = 0.1

Answer: 0.45 = P(X = 4) + P(X = 5) + P(X = 6)

5. (a) Divide the frequency by the total number of students who have waited to get relative frequency( or probability).

| students | 0              | 1               | 2              | 4              | 6              |
|----------|----------------|-----------------|----------------|----------------|----------------|
| prob.    | $\frac{4}{25}$ | $\frac{10}{25}$ | $\frac{5}{25}$ | $\frac{4}{25}$ | $\frac{2}{25}$ |

(b) probability histogram



6. There are a total of 7 cards that will be made. Three of them will have a word with three letters: Get, Its, fun.

Answer:

| (a) | letters | 3             | 4             | 5             | 6             |  |
|-----|---------|---------------|---------------|---------------|---------------|--|
| (a) | prob.   | $\frac{3}{7}$ | $\frac{1}{7}$ | $\frac{2}{7}$ | $\frac{1}{7}$ |  |

(b) probability histogram



7. (a) There can be different answers depending where your intervals start.

| speed(x)        | freq |
|-----------------|------|
| $25 \le x < 30$ | 6    |
| $30 \le x < 35$ | 7    |
| $35 \le x < 40$ | 9    |
| $40 \le x < 45$ | 8    |
| $45 \le x < 50$ | 5    |
| $50 \le x < 55$ | 5    |

(b) prob dist.

| speed(x)        | prob |
|-----------------|------|
| $25 \le x < 30$ | 6/40 |
| $30 \le x < 35$ | 7/40 |
| $35 \le x < 40$ | 9/40 |
| $40 \le x < 45$ | 8/40 |
| $45 \le x < 50$ | 5/40 |
| $50 \le x < 55$ | 5/40 |

8. (a) frequency table

| grade(x)          | freq |
|-------------------|------|
| $90 \le x \le 99$ | 10   |
| $80 \le x \le 89$ | 11   |
| $70 \le x \le 79$ | 11   |
| $60 \le x \le 69$ | 10   |
| $50 \le x \le 59$ | 7    |
| $40 \le x \le 49$ | 4    |
| $30 \le x \le 39$ | 3    |

(b) prob dist.

| -                 |       |
|-------------------|-------|
| grade(x)          | freq  |
| $90 \le x \le 99$ | 10/56 |
| $80 \le x \le 89$ | 11/56 |
| $70 \le x \le 79$ | 11/56 |
| $60 \le x \le 69$ | 10/56 |
| $50 \le x \le 59$ | 7/56  |
| $40 \le x \le 49$ | 4/56  |
| $30 \le x \le 39$ | 3/56  |

9. Remember that the remainder is what is left over after performing long division(by hand). For example: 7 divide by 3 has a remainder of 1 since 3 goies into 7 two times(this gives 3 \* 2 = 6) and 1 will be left over.

| remainder | 0             | 1             | 2             |  |
|-----------|---------------|---------------|---------------|--|
| prob.     | $\frac{2}{8}$ | $\frac{3}{8}$ | $\frac{3}{8}$ |  |

10. The tree shows the experiment. Notice the tree stops on the third level since either a head is tossed or the coin has been tossed three times.



Use the branches to get the probability.

| Answer: |               |               |               |  |
|---------|---------------|---------------|---------------|--|
| tosses  | 1             | 2             | 3             |  |
| prob.   | $\frac{1}{3}$ | $\frac{2}{9}$ | $\frac{4}{9}$ |  |

- 11. (a)  $P(X = 0) = \frac{C(4,0)C(48,3)}{C(52,3)}$ (b)  $P(X = 2) = \frac{C(4,2)C(48,1)}{C(52,3)}$
- 12. (a)  $P(X = 2) = \frac{C(5,2)*C(7,1)}{C(12,3)} = \frac{70}{220}$ (b)  $P(X \le 2) =$

$$\frac{C(5,0)*C(7,3)}{C(12,3)} + \frac{C(5,1)*C(7,2)}{C(12,3)} + \frac{C(5,2)*C(7,1)}{C(12,3)} = \frac{210}{220}$$
  
or  
$$P(X \le 2) = 1 - P(X = 3) = 1 - \frac{C(5,3)*C(7,0)}{C(12,3)}$$

- 13. (a) E(x) = 1 \* 0.3 + 2 \* 0.15 + 4 \* 0.35 + 5 \* 0.2 = 3
  - (b) histogram



14. To calculate P(X = 70) remember that the probabilities must add to 1.

$$\begin{split} E(X) &= 30*0.31 + 32*0.25 + 46*0.29 + 49*0.06 + 63*\\ 0.04 + 70*0.05 &= 39.6 \end{split}$$

15. (a) Write out the cards and give the score to each card. Note: the order of the numbers is not important.

|     | Card     | Score              | e   C          | ard                | Scor               | е              | Card              | Score                 |     |
|-----|----------|--------------------|----------------|--------------------|--------------------|----------------|-------------------|-----------------------|-----|
|     | 1,2      | 1                  | 1              | 1,3                | 1                  |                | $1,\!4$           | 10                    | •   |
|     | $^{1,5}$ | 1                  | 4              | 2,3                | 10                 |                | $^{2,4}$          | 2                     |     |
|     | $^{2,5}$ | $\frac{2}{4}$      | ÷              | $^{2,3}_{3,4}$     | 3                  |                | $^{2,4}_{3,5}$    | 3                     |     |
|     | $^{4,5}$ | 4                  |                |                    |                    |                |                   |                       |     |
|     | Answer:  |                    |                |                    |                    | •              |                   |                       |     |
|     | scoi     | e                  | 1              | 2                  | 3                  | 4              | 10                |                       |     |
|     | probab   | oility             | $\frac{3}{10}$ | $\frac{2}{10}$     | $\frac{2}{10}$     | $\frac{1}{10}$ | $\frac{2}{10}$    |                       |     |
| (b) | E(x) =   | $1 * \frac{3}{10}$ | +2*            | $\frac{2}{10} + 3$ | $3 * \frac{2}{10}$ | +4             | $*\frac{1}{10}+1$ | $10 * \frac{2}{10} =$ | 3.7 |

16. The probabilities may be computed using a tree or combinations.

(a) hearts 0 1 2  
probability 
$$\frac{19}{34}$$
  $\frac{13}{34}$   $\frac{2}{34}$   
(b)  $E(x) = 0 * \frac{19}{34} + 1 * \frac{13}{34} + 2 * \frac{2}{34} = 0.5$ 

17. Use a dice chart to find the probabilities.

| Red | Die |
|-----|-----|
|-----|-----|

|           |   | 1 | 2 | 3 | 4 | 5 | 6 |
|-----------|---|---|---|---|---|---|---|
|           | 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| je        | 2 | 2 | 2 | 3 | 4 | 5 | 6 |
| Green Die | 3 | 3 | 3 | 3 | 4 | 5 | 6 |
| Gre       | 4 | 4 | 4 | 4 | 4 | 5 | 6 |
|           | 5 | 5 | 5 | 5 | 5 | 5 | 6 |
|           | 6 | 6 | 6 | 6 | 6 | 6 | 6 |

| (a) | hearts      | 1              | 2              | 3              | 4              | 5              | 6               |
|-----|-------------|----------------|----------------|----------------|----------------|----------------|-----------------|
| (a) | probability | $\frac{1}{36}$ | $\frac{3}{36}$ | $\frac{5}{36}$ | $\frac{7}{36}$ | $\frac{9}{36}$ | $\frac{11}{36}$ |

(b)  $E(x) = 1 * \frac{1}{36} + 2 * \frac{3}{36} + 3 * \frac{5}{36} + 4 * \frac{7}{36} + 5 * \frac{9}{36} + 6 * \frac{11}{36}$ E(X) = 4.47222 18. Note: X is the **net winnings**.

(a) 
$$\frac{X}{\text{probability}} \frac{1999}{500} \frac{499}{500} \frac{99}{500} \frac{24}{500} \frac{-1}{485}$$

- (b)  $E(x) = \frac{1}{500} * 1999 + \frac{1}{500} * 499 + \frac{3}{500} * 99 + \frac{10}{500} * 24 + \frac{485}{500} * (-1) = 5.1$
- 19. X = profit on a chip.

Answer: 
$$E(x) = 18 * 0.95 + (-23) * 0.05 = 15.95$$

20. X is your net winnings.

| probability $\frac{1}{8}$     | 2              |               |               |                      |
|-------------------------------|----------------|---------------|---------------|----------------------|
| probability $\overline{8}$    | <u>-3</u><br>8 | $\frac{3}{8}$ | $\frac{1}{8}$ |                      |
| E(X) = (-5) * 1/<br>E(X) = -2 | 8+(-4          | (4) * 3/      | /8+           | (-1) * 3/8 + 4 * 1/8 |

21. Use a tree to set up the probability distribution.



- (b) E(x) = -.43 so the game is not fair.
- 22. Use a tree or combinations to find the probabilities. X is your net winnings and A be the cost of the game.

|      | 1 red           | 2  red         | 0 red           |
|------|-----------------|----------------|-----------------|
| Х    | 4-A             | 3A-A           | 0-A             |
| prob | $\frac{20}{36}$ | $\frac{6}{36}$ | $\frac{10}{36}$ |

prob

If the game is fair then E(x) = 0

$$\begin{array}{l} 0 = \frac{20}{36} * (4 - A) + \frac{6}{36} * (2A) + \frac{10}{36} * (-A) \\ 0 = 20(4 - A) + 12A - 10A \\ 18A = 80 \\ A = \frac{80}{18} = 4.44 \end{array}$$

So to make it fair(or as fair as possible) charge \$4.44.

23. X is the your net winnings.

| Х     | 2             | 1             | -3            |  |
|-------|---------------|---------------|---------------|--|
| prob. | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{4}{6}$ |  |

- (a) -1.5
- (b) No, the expected winnings are negative. For this problem the game favors the person running the game.
- (c) Let A = Price of the game, then solve the following equaiton,



24. Note: expected value is an average so do not round the answer.

(a) 
$$E(X) = n * p = 80 * 0.18 = 14.4$$

(b) 
$$E(X) = n * p = 80 * 0.82 = 65.6$$

25. expected number of questions correct:  $10 * \frac{1}{6} =$ 1.66666667

Expected grade is 10 \* 1.6667 = 16.6667

26. E(x) = 75 \* 0.05 = 3.75 Note: expected value is an average so do not round the answer.

27. 
$$E(x) = 6 * \frac{20}{52} = 2.30769$$

- 28. Mean = 4.9Median = 5Mode = 6
- 29. Mean = 21.31818Median = 20.5Mode = 19 and 24
- 30. The fifth score is less than or equal to 82 since 82 is the median and there are 2 scores that are above this number.
- 31. Answers will vary. I used the midpoint of each interval  $\frac{2.5*8+8.5*12+15*24+22*35}{2.5*8+8.5*12+15*24+22*35} = 15.8481$ 8+12+24+35
- 32. Answers will vary. used the median of each interval. Estimated Mean: 30.96
- 33. Enter the x-value in list 1 and the frequency in list 2. use the command: 1-Var Stats  $L_1, L_2$ 
  - (a) mean:  $\overline{x} = 3.75$ median = 4mode = 4standard deviation:  $\sigma_x = 1.25$ variance:  $(\sigma_x)^2 = 1.5625$

- (b) mean:  $\overline{x} = 7.3333$ median = 4 mode = 1 and 15 standard deviation:  $\sigma_x = 6.315765$ variance:  $(\sigma_x)^2 = 39.88888754$
- 34. Enter the x-value in list 1 and the frequency in list 2. use the command: 1-Var Stats  $L_1, L_2$ 
  - (a) mean:  $\overline{x} = 41.8023$
  - (b) median = 31.5
  - (c) mode = 90
  - (d) standard deviation:  $S_x = 32.8697$
  - (e) variance:  $(S_x)^2 = 1080.4171$
  - (f)  $Q_1 = 12$  At least 25% of the people surveyed drink 12 or fewer Dr. Peppers during the semester.  $Q_2 = \text{median} = 31.5$  At least 50% of the people surveyed drink 31.5 or fewer Dr. Peppers during the semester.  $Q_3 = 90$  At least 75% of the people surveyed drink
    - 90 or fewer Dr. Peppers during the semester.
- 35. Answers will vary. I used the middle of each interval.
  - (a) mean = 11.42333
  - (b) standard deviation:  $\sigma_x = 6.561437$
  - (c) 11-20
- 36. Enter the age in list 1 and the frequency in list 2. use the command: 1-Var Stats  $L_1, L_2$ 
  - (a) Mean = 2.6225Median = 3Mode = 3
  - (b)  $Q_1 = 2$  At least 25% of the cars are 2 years or younger.

 $Q_2$  =median = 3 At least 50% of the cars are 3 years or younger.

 $Q_3 = 3$  At least 75% of the cars are 3 years or younger.

- (c) Sample since there are more than 2000 cars on campus.
- (d)  $S_x = 1.623672352$
- (e) mean  $+S_x = 4.2462$ mean  $-S_x = 0.9988$ Between 0.9988 years and 4.2462 years
- (f) mean  $+1.6 * S_x = 5.2204$ mean  $-1.6 * S_x = 0.0246$ Between 0.0246 years and 5.2204 years
- 37. Create a probability distribution from the histogram. Enter the x-values in list 1 and the probability in list 2. use the command: 1-Var Stats  $L_{1},L_{2}$

(a) 
$$E(x) = \overline{x} = 3.5$$

(b) 
$$\sigma_x = 1.62788206$$
  
(c) varience  $= (\sigma_x)^2 = 2.650000001$ 

38. 
$$E(X) = n * p = 8 * \frac{1}{5} = 1.6$$
  
st. dev.  $= \sqrt{n * p * q} = \sqrt{8 * \frac{1}{5} * \frac{4}{5}} = 1.13137$ 

39.  $\sqrt{20 * \frac{2}{20} * \frac{18}{20}} = 1.9365$ 

40. (a)  $\mu = 80 * .15 = 12$  $\sigma = \sqrt{80 * .15 * .85} = 3.1937$ 

(b) within 1 standard deviation means

 $\begin{array}{l} \mu-1*\sigma \leq X \leq \mu+1*\sigma \\ 8.806 \leq X \leq 15.19 \text{ or} \\ x=9,10,11,12,13,14,15 \\ \text{binomcdf}(80,0.15,15) - \text{binomcdf}(80,0.15,8) \\ \text{Answer: } 0.7283 \end{array}$ 

(c) 
$$X = 7, 8, 9, ..., 17$$

binomcdf(80,0.15,17) - binomcdf(80,0.15,6)Answer: 0.9175

41. Use Chebychev's inequality.  $\mu + k\sigma = 27.2$  20 + k \* 2.4 = 27.2k = 3

 $P(12.8 \le X \le 27.2) \ge 1 - \frac{1}{32} = \frac{8}{9}$ 

42. Use Chebychev's inequality.  $\mu + k\sigma = 37.3$  35 + k \* 4.5 = 37.3 k = 0.6

> $P(32.3 \le X \le 37.7) \ge 1 - \frac{1}{0.6^2} = -1.77777$ Note: Chebyshev's inequality doesn't really give useful information for this problem.

- 43. Use Chebychev's inequality.
  - (a)  $\mu + k\sigma = 213$  213 = 205 + 2 \* k k = 4  $P(197 \le X \le 213) \ge 1 - \frac{1}{4^2}$ Answer:  $\ge .9375 = \frac{15}{16}$
  - (b) Want to compute: P(X < 185) + P(X > 225)notice that:  $P(X < 185) + P(X > 225) = 1 - P(185 \le X \le 225)$  $\mu + k\sigma = 225$ 225 = 205 + 2kk = 10 $P(185 \le X \le 225) \ge 1 - \frac{1}{10^2} = 0.99$ Answer:  $\le 0.01$
- 44. Use Chebychev's inequality.  $\mu + k\sigma = 106$

$$100 + k * 2.8 = 106$$
  

$$k = \frac{15}{7}$$
  

$$P(94 \le X \le 106) \ge 1 - \frac{1}{(15/7)^2} = 0.782222$$

We would expect at least 0.78222 \* 10000 or at least 7822 boxes to have between 94 and 106 paperclips.

- 45. (a) normalcdf(1.25, 1E99, 0, 1) = 0.1056
  - (b) normalcdf(-1, 1.5, 0, 1) = 0.7745
  - (c) normalcdf(-0.75, 1E99, 0, 1) = 0.7734
  - (d) normalcdf(-1E99, 2.5, 0, 1) = 0.9938
  - (e) 0, since z is a continuous random variable.
  - (f) normalcdf(-1E99, -1, 0, 1) +normalcdf(1.15, 1E99, 0, 1)Answer: 0.2837
  - (g) A = invnorm(0.647, 0, 1) = 0.3772
  - (h) J=invNorm(1-.791,0,1) = -0.8099
- 46. area not between A and -A is 1-0.76 = 0.24Area at each end of the graph is  $\frac{0.24}{2} = 0.12$ A = invnorm(0.12+0.76,0,1) = 1.174986
- 47. (a) normalcdf(111,135,100,20) = 0.268478
  - (b) normalcdf(85,120,100,20) = 0.614717
  - (c) normalcdf(75, 1E99, 100, 20) = 0.89435
  - (d) A = invnorm(0.42, 100, 20) = 95.96213
- 48. (a) normalcdf(144, 156, 140, 8) = 0.285787
  - (b) normalcdf(130, 156, 140, 8) = 0.8716
  - (c) normalcdf(-1E99,148,140,8) = 0.8413447
  - (d) zero since X is a ocntinuous random variable
  - (e) B = invnorm(1-.37,140,8) = 142.6548268
- 49. (a)  $\mu + 1.5\sigma = 65 + 1.5 * 6 = 74$  $\mu - 1.5\sigma = 65 - 1.5 * 6 = 56$ normalcdf(56, 74, 65,6) = 0.8663855 Answer: 86.63855%
  - (b)  $\mu + 2\sigma = 65 + 2 * 6 = 77$ normalcdf(77, 1E99, 65,6) = 0.02275 Answer: 2.275%
- 50. area to the left of X=50 normalcdf(-1E99,50,50,10) = 0.5 Area to the right of B is 1-0.5-0.48 = 0.02Area to the left of A is 1-.75-.02 = 0.23Answer: A =invnorm(0.23,50,10) = 42.6115
- 51. st. dev =  $\sqrt{var} = \sqrt{225} = 15$ area to the left of X=35 normalcdf(-1E99,35,45,15) = 0.2525

Answer: A = invnorm(0.2525+0.4,45,15) = 50.8809

52. normalcdf(-1E99,112,120,10) = 0.2111855

- 53. (a) normalcdf(27000, 1E99, 24000, 1400) = 0.01606
  - (b) normalcdf(22500, 28000, 24000, 1400) = 0.85587
  - (c)  $\operatorname{binompdf}(4, 0.85587, 2) = 0.091301$

54.  $\sigma = 15 * 24 = 360$ 

- (a) normalcdf(8250, 1E99, 8000, 360) = 0.2437
- (b) binompdf(4, 0.2437, 4) = 0.003527
- (c) 400 \* 0.2437 = 97.48approximately 97
- 55. (a) normalcdf(28, 1E99, 20, 5) = 0.0548
  - (b) since the random variable is continuous, the probability that it takes exactly 20 minutes is zero.
  - (c) normalcdf(16,26,20,5) = 0.6731500 \* 0.6731 = 336.55 approximately 336 or 337.
- 56. invnorm(0.8, 10, 2.5) = 12.10405 minutes
- 57. (a) normalcdf(9.2, 1E99, 7.4, 1.2) = 0.0668
  - (b) 0, since this is a continous random variable
- 58. (a) minimum length = 1.001 2 \* 0.002 = 0.997maximum length = 1.001 + 2 \* 0.002 = 1.005
  - (b) normalcdf(0.997, 1.005, 1.001, 0.002) = 0.9545Accept = 95.45%

Answer: 100-95.45 = 4.55%

- (c) 10000 \* 0.0455 = 455.
- 59. (a) normalcdf(30,1E99,28.6,2.3) = 0.2714
  - (b) 0, since this is a continous random variable
  - (c) normalcdf(28, 32, 28.6, 2.3) = 0.5332
- 60. (a) normalcdf(14, 1E99, 14.1, 0.2) = 0.6915
  - (b) normalcdf(13.8, 14.5, 14.1, 0.2) = 0.9104
  - (c)  $\mu + 1.5\sigma = 14.1 + 1.5 * 0.2 = 14.4$   $\mu - 1.5\sigma = 14 - 1.5 * 0.2 = 13.8$ normalcdf(13.8, 14.4, 14.1, 0.2) = 0.866386 Answser: 86.6386%
- 61. (a) normalcdf(144, 1E99, 128, 14) = 0.1265
  - (b) noramlcdf(-1E99, 108, 128, 14) = 0.07656 250 \* 0.07656 = 19.14 Answer: about 19
- 62. (a) normalcdf(45, 1E99, 42, 2) = 0.0668
  - (b) normalcdf(-1E99, 36, 42, 2) = 0.0013 Answer: 0.13%
- 63. normalcdf(2.2, 1E99,1.5, 0.4) = 0.040059120 \* 0.040059 = 4.807

Answer: approximately 5

- 64. invnorm(0.03, 20, 15/12) = 17.649 years
- 65. A = invnorm(1-0.08,63,15) = 84.076 B = invnorm(1-0.08-0.18, 63,15) = 72.65C = invnorm(1-0.08-0.18-0.25,63,15) = 62.624