Chapter 5 Homework Solutions

Compiled by Joe Kahlig

1. (a) $\left[\begin{array}{cc}1 & 0 \\ -1 & 2 \\ 3 & 1\end{array}\right]-\left[\begin{array}{cc}2 & -4 \\ 0 & 4 \\ 8 & -2\end{array}\right]=\left[\begin{array}{cc}-1 & 4 \\ -1 & -2 \\ -5 & 3\end{array}\right]$
(b) Not possible, the dimension don't match.
(c) $\left[\begin{array}{ccc}7 & -14 & 0 \\ -7 & 21 & 14\end{array}\right]+\left[\begin{array}{ccc}2 & 0 & 8 \\ -4 & 4 & -2\end{array}\right]=$

$$
\left[\begin{array}{ccc}
9 & -14 & 8 \\
-11 & 25 & 12
\end{array}\right]
$$

(d) Not possible, the dimensions don't match.
(e) $\left[\begin{array}{ccc}3 & -6 & 0 \\ -3 & 9 & 6\end{array}\right]-\left[\begin{array}{ccc}2 & -2 & 6 \\ 0 & 4 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & -4 & -6 \\ -3 & 5 & 4\end{array}\right]$
2. (a) $\left[\begin{array}{ccc}5 a & -15 & 5 \\ 0 & 5 & 20\end{array}\right]+\left[\begin{array}{ccc}6 a & -6 & 2 \\ 0 & 2 & 6\end{array}\right]=\left[\begin{array}{ccc}11 a & -21 & 7 \\ 0 & 7 & 26\end{array}\right]$
(b) Not possible, the dimensions don't match.
(c) Not possible, the dimensions don't match.
(d) $\left[\begin{array}{cc}6 & 0 \\ -6 & 9\end{array}\right]+\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}6+a & b \\ -6+c & 9+d\end{array}\right]$
(e) $\left[\begin{array}{ccc}2 & 6 & 2 j \\ -4 & 0 & 4\end{array}\right]+\left[\begin{array}{ccc}0 & 3 & -5 \\ 7 & k & 2\end{array}\right]-C^{T}=$
$\left[\begin{array}{ccc}2 & 9 & 2 j-5 \\ 3 & k & 6\end{array}\right]-\left[\begin{array}{cccc}2 & 7 & 1 & b \\ -1 & 0 & -3 & \end{array}\right]=$ $\left[\begin{array}{ccc}0 & 8 & 2 j-5-b \\ 4 & \mathrm{k} & 9\end{array}\right]$
3. (a) $\left[\begin{array}{cc}6 x+2 & 12+2 u \\ -3-2 z & 14\end{array}\right]=\left[\begin{array}{cc}2 y & 5 \\ 7 & y\end{array}\right]$

Now solve these equations:
$6 x+2=2 y$
$12+2 u=5$
$-3-2 z=7$
$14=y$
Answer:
$y=14, z=-5, u=-3.5$, and $x=26 / 6$
(b) $\left[\begin{array}{cc}3 & -4 x+5 y \\ 6 y+10 x & 12\end{array}\right]=\left[\begin{array}{cc}3 & 22 \\ -3 & 12\end{array}\right]$

Now solve these equations:
$-4 x+5 y=22$
$6 y+10 x=-3$
Answer: $x=\frac{-147}{74}$ and $y=\frac{104}{37}$
(c) $\left[\begin{array}{cc}2 & 3 x \\ 6 x & 6\end{array}\right]+2\left[\begin{array}{cc}3 & -2 y \\ 6 y & -1\end{array}\right]=\left[\begin{array}{cc}8 & -13 \\ 84 & 4\end{array}\right]$
$\left[\begin{array}{cc}8 & 3 x-4 y \\ 6 x+12 y & 4\end{array}\right]=\left[\begin{array}{cc}8 & -13 \\ 84 & 4\end{array}\right]$
Now solve these equations:
$3 x-4 y=-13$
$6 x+12 y=84$
Answer: $x=3$ and $y=5.5$
(d) $\left[\begin{array}{ll}x-6 y & 2-2 z \\ y-14 & -1\end{array}\right]=\left[\begin{array}{cc}4 & 0 \\ 2 x & -1\end{array}\right]$

Now solve these equations:
$x-6 y=4$
$2-2 z=0$
$y-14=2 x$
Answer: $x=-8, y=-2$, and $z=1$
4. (a) 3×1
(b) 5×3
(c) Not possible.
(d) 4×4
(e) Not possible.
(f) 3×5
5. (a) False. Try with the folowing.

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(b) True
(c) False, it is a 4×4 matrix.
6. (a) Not possible
(b) $\left[\begin{array}{cc}13 & -7 \\ 4 & 3\end{array}\right]$
(c) Not possible
(d) $\left[\begin{array}{ccc}2 & -2 & 4 \\ -2 & 7 & 6\end{array}\right]$
(e) $\left[\begin{array}{cc}17 & 20 \\ 7 & 6\end{array}\right]$
(f) $\left[\begin{array}{cc}a-2 c & b-2 d \\ 2 c & 2 d \\ 4 a-c & 4 b-d\end{array}\right]$
(g) $\left[\begin{array}{lll}a & -a+2 b & 3 a+b \\ c & -c+2 d & 3 c+d\end{array}\right]$
7. $\left[\begin{array}{ccc}2 & 6 & -4 \\ 10 & 16 & -8 \\ -12 & 20 & 10\end{array}\right]$
8. $A B=\left[\begin{array}{ll}x+5 & 2 \\ y+5 & 2\end{array}\right]$ and $B A=\left[\begin{array}{cc}x & 1 \\ 5 x+2 y & 7\end{array}\right]$
9. Note: either multiple the entire matrix or only use the row and column needed for the answer.
(a) $C_{1,3}=0+9+20=29$
(b) $D_{3,1}=0+0+50+4=54$
10. $\left[\begin{array}{cc}-5 & 30 \\ 6+x-2 y & 15+5 y\end{array}\right]=\left[\begin{array}{cc}-5 & y+2 z \\ 1 & 35\end{array}\right]$

Now solve these equations:
$30=y+2 z$
$6+x-2 y=1$
$15+5 y=35$
Answer: $x=3, y=4$, and $z=13$
11. (a) $B M=\left[\begin{array}{ll}2910 & 8970\end{array}\right]$

There is no meaning for these numbers since the lables of the rows/collumns do not match up.
(b) $M L^{T}=\left[\begin{array}{l}7200 \\ 2700\end{array}\right]$

The 7200 is the amount of vitamin A and the 2700 is the amount of vitamin C that is consumed at lunch.
(c) $(B+L) M=\left[\begin{array}{ll}6840 & 21480\end{array}\right]$

There is no meaning for these numbers since the lables of the rows/collumns do not match up.
(d) $M(B L)^{T}=\left[\begin{array}{c}11200 \\ 4040\end{array}\right]$

The 11200 is the amount of vitamin A and the 4040 is the amount of vitamin C that is consumed together at breakfast and lunch.
12.
(a) $\left[\begin{array}{ccc}2 & 3 & 4 \\ 0 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{c}6 \\ 7 \\ 10\end{array}\right]$
also acceptable is

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 1 & -3 \\
1 & 1 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
6 \\
7 \\
10
\end{array}\right]
$$

(b) $\left[\begin{array}{ccc}1 & 0 & 8 \\ 1 & -1 & 2 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{c}4 \\ 15 \\ 2\end{array}\right]$
also acceptable is

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 8 \\
1 & -1 & 2 \\
3 & 2 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
4 \\
15 \\
2
\end{array}\right]
$$

13.

(a) $\left[\begin{array}{ccc}-35 / 32 & 25 / 32 & -33 / 32 \\ 3 / 8 & -1 / 8 & 1 / 8 \\ 7 / 32 & -5 / 32 & 13 / 32\end{array}\right]$
(b) not possible.
14. (a) Solve the equation for M .

$$
\begin{gathered}
A M-3 B=C \\
A M=C+3 B \\
M=A^{-1}(C+3 B) \\
M=\left[\begin{array}{ccc}
11.5 & 25 & 26.1 \\
-2.55 & -10.4 & -3.11 \\
5.2 & 3.6 & 9.04
\end{array}\right]
\end{gathered}
$$

(b) Solve the equation for K .

$$
\begin{aligned}
& K A+K C=B \\
& K(A+C)=B \\
& K=B \cdot(A+C)^{-1}
\end{aligned}
$$

$$
K=\left[\begin{array}{ccc}
\frac{427}{141} & \frac{-643}{141} & \frac{10}{47} \\
\frac{-2507}{1692} & \frac{4217}{1692} & \frac{-181}{564} \\
\frac{-169}{846} & \frac{-11}{846} & \frac{-23}{282}
\end{array}\right]
$$

(c) Solve the equation for J.

$$
\begin{aligned}
& 3 J+C J=3 A^{T} \\
& (3 I+C) J=3 A^{T} \\
& J=(3 I+C)^{-1} \cdot 3 A^{T}
\end{aligned}
$$

15. (a) $\left[\begin{array}{ccc}3 & 2 & 1 \\ -3 & 3 & 4 \\ 2 & 2 & 1\end{array}\right]$

$$
J=\left[\begin{array}{ccc}
\frac{-3741}{7937} & \frac{6639}{7937} & \frac{-26169}{7937} \\
\frac{795}{7937} & \frac{174}{7937} & \frac{14001}{7937} \\
\frac{1581}{7937} & \frac{975}{7937} & \frac{2505}{7937}
\end{array}\right]
$$

(b) $\left[\begin{array}{ccc}1 & 0 & -1 \\ -2.2 & -.2 & 3 \\ 2.4 & .4 & -3\end{array}\right]$
16. $A^{-1}=\left[\begin{array}{ccc}0.5 & -3 & -4 \\ -0.5 & 2 & 3 \\ -1 & 1 & 2\end{array}\right]$

