Problems:

1. Sketch the graph of the following functions. Explain why the function is discontinuous at the given point a.
(a) $f(x)=\frac{1}{x+2}$ and $a=-2$
(b)

$$
f(x)=\left\{\begin{array}{ll}
x+3 & \text { if } x \leq-1 \\
2^{x} & \text { if } x>-1
\end{array} \quad \text { and } \quad a=-1\right.
$$

(c)

$$
f(x)=\left\{\begin{array}{ll}
\cos x & \text { if } x<0 \\
0 & \text { if } x=0 \\
1-x^{2} & \text { if } x>0
\end{array} \quad \text { and } \quad a=0\right.
$$

2. Find the limits.
(a)

$$
\lim _{x \rightarrow 4} 3^{\sqrt{x^{2}-2 x-4}}
$$

(b)

$$
\lim _{x \rightarrow \pi} \sin (x+\sin x)
$$

3. Find the values of a and b that make f continuous everywhere.

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x-1} & \text { if } x<1 \\ a x^{2}+b x-5 & \text { if } 1 \leq x<2 \\ 3 x-a+2 b & \text { if } x \geq 2\end{cases}
$$

4. Show that the equation $e^{x}=3-2 x$ has a root in the interval $(0,1)$.
5. Find the limits.
(a)

$$
\lim _{x \rightarrow \infty} \frac{x+1}{4 x-3}
$$

(b)

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}-1}{2 x+5}
$$

(c)

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+3 x+1}}{x-1}
$$

(d)

$$
\lim _{x \rightarrow \infty} \frac{1+e^{x}}{1-3 e^{x}}
$$

(e)

$$
\begin{gathered}
\lim _{x \rightarrow \infty}\left[\ln \left(3 x^{2}+4\right)-\ln \left(6 x^{2}-5\right)\right] \\
\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+x+1}+x\right)
\end{gathered}
$$

6. Find the horizontal and vertical asymptotes of the function $f(x)=\frac{2 e^{x}}{e^{x}-5}$.
7. Find the equation of the tangent line to the graph of the function $f(x)=\sqrt{x}$ at $(1, f(1))$.
8. Find the equation of the tangent line to the graph of $y=g(x)$ at $x=5$, given $g(5)=-3$ and $g^{\prime}(5)=4$.
9. The position function of a moving particle is given by $s(t)=2 t^{2}-6 t+5$, where t is the time.
(a) Find the average speed of the particle over the interval $[4,6]$.
(b) Find the instantaneous velocity at $t=4$.
10. The following limits represent the derivative of some function f at some point a. Find such an f and a.
(a)

$$
\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{6}+h\right)-\frac{1}{2}}{h}
$$

(b)

$$
\lim _{x \rightarrow 1 / 4} \frac{\frac{1}{x}-4}{x-\frac{1}{4}}
$$

