Problems:

1. Differentiate the following functions.
(a) $f(x)=x^{7}+\sqrt[4]{x}-\frac{5}{x}+\tan (x)-\csc (x)$
(b) $h(t)=(2 t+5)(3-t)$
(c) $y=\left(\frac{1}{x^{2}}-\frac{7}{x^{5}}\right)(3 x-2)$
(d) $y=\frac{\sqrt[4]{x^{3}}+x}{x^{2}}$
(e) $p(t)=\left(2-3 t+5 t^{2}\right)^{50}$
(f) $f(x)=\frac{x^{2} e^{x}}{x^{2}+e^{x}}$
(g) $H(t)=\frac{t}{\left(t^{3}-7\right)^{5}}$
(h) $f(x)=3^{5 x^{2}-1}$
(i) $k(t)=e^{t \sin ^{2}(t)}$
(j) $y=\csc (\tan (\cos (x)))$
2. Find the 2022nd derivative of $y=x e^{2 x}$
3. Find the tangent line equation to the graph of $f(x)=3 x+\sqrt{x}$ at $(4, f(4))$.
4. Given $f(x)=\sqrt[3]{x g(x)+2}$. Let $g(2)=3$ and $g^{\prime}(2)=1$. Find the normal line equation to the graph of $f(x)$ at $(2, f(2))$.
5. Given

$$
f(x)=\left\{\begin{array}{ll}
m x-b & \text { if } x<-1 \\
5 x^{2} & \text { if } x \geq-1
\end{array} .\right.
$$

Find values of m and b that make $f(x)$ differentiable everywhere.
6. For what values of a and b is the line $y=3 x-b$ tangent to the parabola $y=a x^{2}$ when $x=4$?
7. Show there are two tangent lines to the parabola $y=4 x^{2}$ that pass through the point $(0,-4)$. Find the equation of these tangent lines.

