Week In Review (week 7)

Problems:

1. Differentiate the following functions.
(a) $f(x)=\arctan \left(3 x^{2}-1\right)$
(b) $h(t)=\arcsin \left(t^{3} e^{t}\right)$
(c) $g(x)=\ln \left(4 x-6 x^{2}\right)$
(d) $y=\cos \left(\log _{4}(x)\right)$
(e) $y=(\ln (3 x))^{\csc (x)}$
(f) $f(x)=\frac{(4 x+1)^{5}(6-5 x)^{2}}{2 x^{9} e^{4 x^{2}+7 x}}$
2. Find the tangent line equation to the curve $x^{4}+x^{2} y^{2}+y^{3}=3$ at $(1,1)$.
3. Find the tangent line equation to the curve $x e^{y}=x-y$ at $(0,0)$
4. Find the tangent line equation to the curve $y \sin (2 x)=x \cos (2 y)$ at $(\pi / 2, \pi / 4)$
5. Find the tangent line equation to the curve $y=5 x^{3} \ln (x)$ at $(1,0)$
6. Given $\vec{r}(t)=\langle 2 \sin (t)+2 \cos (t), 3 \cos (t)-3 \sin (t)\rangle$
(a) Find $\vec{r}^{\prime}\left(\frac{2 \pi}{3}\right)$
(b) Find the tangent line equation at $t=0$.
(c) Find the horizontal tangent line(s) for $\vec{r}(t)$.
(d) Find the vertical tangent line(s) for $\vec{r}(t)$.
7. Given $\vec{r}(t)=\left\langle t^{4}-24 t+5,10 t^{5}+1\right\rangle$
(a) Find $\vec{r}^{\prime}(1)$
(b) Find the tangent line equation at $t=0$.
(c) Find the horizontal tangent line(s) for $\vec{r}(t)$.
(d) Find the vertical tangent line(s) for $\vec{r}(t)$.
8. Find the angle between the velocity vector and the acceleration vector of $\vec{r}(t)=\left\langle t, 2 t^{3}\right\rangle$ at the point where $t=1$.
9. At what point(s) on the curve $y=t^{3}-3 t^{2}-12 t, x=\frac{1}{2} t^{2}-t$ is the tangent line parallel to the line of equation $x=4 t, y=1-6 t$?
10. A ball is thrown vertically upward with a velocity of 32 feet per second. The height after t seconds is given by $h(t)=32 t-16 t^{2}$. With what velocity does the ball hit the ground?
