Problems:

1. Find the critical points of the following functions.
(a) $f(x)=\frac{7-x}{x+1}$
(b) $g(x)=\left(x^{3}-12 x\right)^{1 / 3}$
2. Find the absolute maximum and minimum of each of the following functions on the given interval.
(a) $f(x)=\frac{1}{x}$ on $[1,5]$.
(b) $g(x)=-5 x^{3}$ on $[-2,4]$.
(c) $h(x)=x^{2} e^{-x}$ on $[0,4]$.
3. Find the global max and global min values (if exist) of the function

$$
f(x)= \begin{cases}x+5, & -4<x \leq-1 \\ 3-x^{2}, & -1<x<3 \\ 5-x, & 3 \leq x<4\end{cases}
$$

4. Classify the local extrema of $f(x)$ given $f^{\prime}(x)=(x-3)^{5}(x+1)(x+7)^{8}$.
5. If $f^{\prime}(x)=x(4 x-1)^{2 / 3}$, find where the function is concave up. Are there any points of inflection?
6. If $f(x)=x^{2} \ln \left(\frac{x}{4}\right)$, find where the function is concave up. Are there any points of inflection?
7. Sketch a graph of a continuous function where $x=-1$ is a critical point, but the function has no local extrema.
8. Sketch a graph of a continuous function where $x=3$ is a local minimum and the function is not differentiable at $x=3$
9. Does $f(x)=x \sin (x)+\cos (x)$ satisfies the Mean Value Theorem on $[0,2 \pi]$? Find all c that satisfies the conclusion of the Mean Value Theorem.
10. Let $P=P(t)$ be the size of a population. Suppose that P is continuous on $[0,20]$ and differentiable on $(0,20)$. Given $P(0)=50$ and the growth rate satisfies $1 \leq P^{\prime} \leq 5$, what are the max and min possible values of $P(20)$?
