Q1. (a)
$$f(x) = \frac{7-x}{x+1}$$
.

Compute
$$f'(x) = \frac{(7-x)^2 \cdot (x+1)^2}{(x+1)^2}$$

$$= \frac{(-1)(\chi+1) - (7-\chi)\cdot 1}{(\chi+1)^2}$$

$$= \frac{-x-1-7+x}{(x+1)^2} = \frac{-8}{(x+1)^2}$$

<1> Set
$$f'(x)=0 \Rightarrow \frac{-8}{(x+1)^2}=0$$
 no solution.

(2)
$$f'(x)$$
 doesn't exist \Rightarrow $(x+1)^2=0 \Rightarrow x=-1$. (rule out)

Our original function $f(x) = \frac{7-x}{x+1}$, it regaines that $x \neq -1$.

x=-1 is not in the domain of f.

So there is no critical point for f(x).

$$g(x) = (x^3 - 12x)^3$$

compute
$$g'(x) = \frac{1}{3}(x^3 - 12x)^{-\frac{3}{3}} \cdot (3x^2 - 12)$$

$$= \frac{\chi^2 - 4}{(\chi^3 - 12\chi)^{3/3}}$$

(1) Set up
$$g'(x) = 0 \implies \chi^2 - 4 = 0 \implies \chi = \pm 2$$
.

127 g'(x) doesn't exist
$$\Rightarrow$$
 $\chi^3-(2 \times =0) \Rightarrow \chi=0, \pm 2\sqrt{3}$.

227 g'(x) doesn't exist $\Rightarrow \chi^2-(2\chi=0) \Rightarrow \chi^2-(2=0)$ or $\chi=0$, $\pm 2\sqrt{3}$. So critical prints are $\chi=\pm 2$, 0, $\pm 2\sqrt{3}$.

Q2. (a) $f(x) = \frac{1}{x}$ on [1,5]. (idea: critical pts + endpoints. evaluate and aggre). Compute $f'(x) = -\frac{1}{x^2}$ on (1,5). (i) Set f'(x) = 0 no solution (27 f'(x) doesn't exist $\Rightarrow x = 0$, but it's not in (1,5). No critical points for f(x). on (1,5).

Look at endpoints: f(1) = 1 and $f(5) = \frac{1}{5}$. Then $f_{max} = 1$ and $f_{min} = \frac{1}{5}$.

(b). $g(x) = -5x^3$ on [-2, 4]. Compute $g'(x) = -15x^2$ on (-2, 4).

<1> Set up g'(x) = 0 \Rightarrow x = 0 is in (-2, 4).

(2) g'(x) doesn't exist \Rightarrow no such candidate.

Only critical point for g(x) is x=0.

Compare/Evaluate: g(0) = 0, $g(-2) = -5 \cdot (-2)^3 = 40$ and $g(4) = -5 \cdot 4^3 = -320$.

and
$$g(4) = -5 \cdot 4^3 = -320$$
.
 $g_{\text{max}} = 40$ and $g_{\text{min}} = -320$.

(c)
$$h(x) = x^2 e^{-x}$$
 on $[0,4]$.
Compute $h'(x) = 2x e^{-x} + x^2 \cdot (-e^{-x}) = (2x - x^2) e^{-x}$.
on $(0,4)$.

<1> Set up
$$h'(x)=0 \Rightarrow 2x-x^2=0 \Rightarrow x(2-x)=0$$
.

$$x=0, 2 \Rightarrow x=2. \quad (x=0 \text{ endpoint}).$$

(2) h'(x) doesn't exist > no such candidate.

So critical point for h(x) is x=2.

Compare / Evaluate: $h(2) = 4e^{2}$. h(0) = 0, $h(4) = (6e^{-4})$.

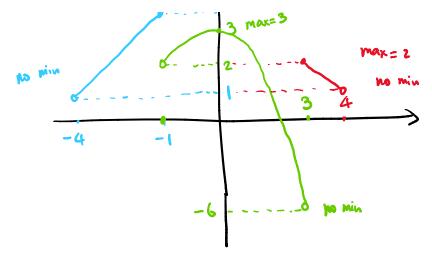
$$h_{\text{max}} = 4e^{2}$$
 and $h_{\text{min}} = 0$.

$$\left(\frac{4e^{2}}{16e^{4}} = \frac{4e^{2} \cdot e^{4}}{16e^{2} \cdot e^{4}} = \frac{4e^{2}}{16} = \frac{e^{2}}{4} > 1 \quad e \approx 2.7...\right).$$

Q3.
$$f(x) = \begin{cases} x+5 & -4 < x \le -1 \\ 3-x^2 & -1 < x < 3 \\ 5-x & 3 \le x < 4 \end{cases}$$

Sketch the grap of each piece:

1X= 4
3 max= 3
max= 2



So
$$f_{\text{max}} = 4$$
 @ x=-1.
 $f_{\text{min}} = DNE$

Q4. $f(x) = (x-3)^5(x+1)(x+7)^8$.

classify the local entrema:

We use 1"-derivative test: consider $f(x) = (x-3)^5(x+1)(x+7)^8$

Gigns of g: + + - +

-7 -1 3

(no change) (change) (change) (ney to pro)
(loc max) (loc min)

So f has loc. max at x=-1.

and loc. min at x=3.

Q5
$$f'(x) = x(4x-1)^{3/3}$$
 determine concavity.

(we need $2^{n/2}$ derivative).

Compute
$$f''(x) = (f'(x))' = (\chi (4\chi - 1)^{2/3})'$$

= $(4\chi - 1)^{2/3} + \chi \cdot \frac{2}{3} \cdot (4\chi - 1)^{-\frac{1}{3}} \cdot 4$

$$= \frac{(4x-1)^{2} + x \cdot \frac{3}{3} \cdot (4x-1)^{2} \cdot 4}{(4x-1)^{2} \cdot 3}$$

$$= \frac{(4x-1)^{2}}{(4x-1)^{2} \cdot 3} + \frac{\frac{3}{3}x}{(4x-1)^{2} \cdot 3}$$

$$= \frac{3(4x-1) + 8x}{3(4x-1)^{2} \cdot 3} = \frac{20x-3}{3(4x-1)^{2} \cdot 3}$$

Check signs of f":

$$f''>0 \Rightarrow f$$
 is concave up: on $(-\infty, \frac{3}{20})$ and $(\frac{1}{4}, \infty)$
So inflection points one $x=\frac{3}{20}$ and $x=\frac{4}{5}$.

Q6.
$$f(x) = \chi^{2} \ln \left(\frac{x}{4}\right).$$
Compute
$$f'(x) = 2x \ln \left(\frac{x}{4}\right) + \chi^{2} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$= 2x \ln \left(\frac{x}{4}\right) + \chi^{2}$$

and
$$f''(x) = 2 \cdot \ln(\frac{x}{4}) + 2x \cdot \frac{1}{\frac{x}{4}} \cdot \frac{1}{4} + 1$$

= $2 \cdot \ln(\frac{x}{4}) + 2 + 1 = 2 \ln(\frac{x}{4}) + 3$

$$\frac{-}{4e^{-\frac{3}{2}}}$$

$$\frac{2\ln(\frac{x}{4}) + 3 = 0}{2\ln(\frac{x}{4}) = -3}$$

$$\ln(\frac{x}{4}) = -\frac{3}{2}$$

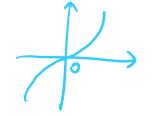
$$\frac{3}{4} = e^{-3/2}$$

$$\frac{3}{4} = e^{-3/2}$$

So f is concove up when $4\bar{e}^{\frac{3}{2}} < x < \infty$ inflection point is $x = 4e^{\frac{3}{2}}$ (on $(4e^{\frac{3}{2}}, \infty)$).

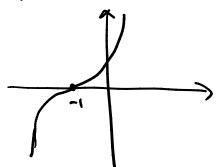
Q7. Find a function continuous, $\chi=-1$ critical point lout f has no local extrema.

Think of y= x3 at x=0



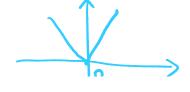
So shift he function to left by I unit

$$\Rightarrow f(x) = (x+1)^3 \quad \text{at} \quad x = -1.$$



Find fix). x=3 local. min, but f(3) non exist. Q8.

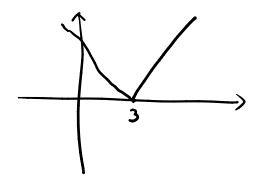
Think of y= |x| at x=0





Shift it by 3 units to right:

$$f(x) = \langle x-3 \rangle$$
 at $x=3$



 $f(x) = \chi Sin(x) + cos(x)$ on $[0, 2\pi]$. Q9.

$$\left(\begin{array}{cc}f'(c)=&\frac{f(b)-f(a)}{b-a}\end{array}\right).$$

Verify: f is confinuous on $[0, 2\pi]$ and f is differentiable on $(0, 2\pi)$.

Compute: $f'(x) = \sin(x) + \alpha\cos(x) - \sin(x)$ = $\chi \cos(x)$.

$$\frac{f(b)-f(a)}{b-a} = \frac{f(2\pi)-f(a)}{2\pi-0} = \frac{2\pi \sin(2\pi)+\cos(2\pi)-(0+\cos(2\pi))}{2\pi}$$

$$= \frac{1-1}{2\pi} = 0$$

Set up $f'(c) = \frac{f(b)-f(a)}{b-a} = 0$ on $(0, 2\pi)$.

Set
$$wp = f'(c) = \frac{f(0) - f(a)}{b - a} = 0$$
 on $(0, 2\pi)$.

$$\Rightarrow \qquad c \cos(c) = 0 \qquad (c \neq 0, \quad 0 < c < 2\pi).$$

$$=$$
 $c = \frac{\pi}{2}$ and $c = \frac{3\pi}{2}$.

Q10.
$$P = P(t)$$
 population. P is continuous on [0, 20] is differentiable on (0, 20).

$$P(0)=50$$
, $1 \le p'(t) \le 5$.

So that:
$$P(c) = \frac{P(20) - P(0)}{20 - 0}$$

$$\Rightarrow 1 \leq \frac{P(v_0) - P(0)}{v_0} \leq 5$$

$$\Rightarrow$$
 $v_0 \in \mathcal{P}(v_0) - \mathcal{P}(0) \in (00)$

So $P(x_0)_{max} = 150$ and $P(x_0)_{max} = 70$.