## EXAM 3 REVIEW (SECTIONS 4.1 - 5.2)

**Problem 1.** Find the critical numbers for the function  $f(x) = (x-2)^{\frac{1}{7}}x^2$ .

**Problem 2.** Find the inflection points for the function  $f(x) = x^5 + 10x^4$ .

**Problem 3.** Given the function  $f(x) = \frac{\sqrt{x-4}}{x+1}$ , find the following: a) Domain

- b) Vertical asymptotes
- c) Horizontal asymptotes
- d) x-intercept(s) and y-intercept.
- e) Critical numbers and intervals where the function is increasing and decreasing.

f) Inflection points and intervals where the function is concave up and concave down.

**Problem 4.** Find the absolute maxima and the absolute minima for the following: a)  $f(x) = (5 + \ln x)^4$ ,  $[\frac{1}{e^7}, 1]$ .

b) 
$$f(x) = \sin^2 x + \cos^2 x$$
,  $[0, \frac{3\pi}{4}]$ .





a) On what intervals is f increasing? Decreasing?

- b) Where does f have a local maxima? A local minima?
- c) On what intervals is f concave up? Concave down?
- d) What are the inflection points of f?

**Problem 6.** A box with an open top has a volume of 400 cubic meters. If the height of the box is twice its width, find the dimensions of a box which would have the smallest possible surface area.

**Problem 7.** Find the point on the parabola  $y = \frac{1}{2}x^2$  that is closest to the point (5, 1).

## **Problem 8.** Find the following limits:

a)  $\lim_{x \to 0^+} (\sin x)^{\tan x}$ 

b) 
$$\lim_{x \to \infty} 5\left(1 + \frac{3}{x}\right)^{2x}$$

c) 
$$\lim_{x \to 1^+} (x-1) \tan\left(\frac{\pi x}{2}\right)$$

d) 
$$\lim_{x \to \infty} \arcsin\left(\frac{1-3x^2}{6x^2-x}\right)$$

**Problem 9.** Given f(3) = 0, f'(3) = 0, f''(3) = -4 what can you say about f(x) at x = 3?

**Problem 10.** Find the value of c that satisfies the Mean value Theorem for  $f(x) = \ln(x^3)$ , [1, 4].

**Problem 11.** Find the most general antiderivative for  $f(x) = 15x^4 + \sqrt[3]{x^2} + \frac{\pi}{x} + \frac{2}{x^2} + \frac{5}{1+x^2} + 9\sec^2 x$ .

**Problem 12.** Find f(x) if  $f''(x) = 4x^3 + 2\cos x$ , f(0) = 0, f'(0) = 4

**Problem 13.** Use geometry to evaluate  $\int_{-1}^{2} (1-x) dx$ .

**Problem 14.** Approximate the area under the curve  $f(x) = e^{x^2}$  in the interval [0,1] using n = 4 and the midpoint rule.

**Problem 15.** Express the area under the curve  $f(x) = \frac{2x}{x^2 + 1}$  on the interval [1,3] as a limit.

Problem 16. Evaluate the following definite integrals.

a) 
$$\int_{1}^{4} \frac{x^2 - 1}{x\sqrt{x}} dx$$

b) 
$$\int_{1}^{2} \left(\frac{3}{x} + 2^{x}\right) dx$$