Final Exam Review

Problem 1. If $\vec{a}=\langle 4,3\rangle$ and $\vec{b}=\langle-2,1\rangle$, find the unit vector \vec{a} and the vector $(5 \vec{a}-2 \vec{b})$.

Problem 2. Two forces $\overrightarrow{F 1}$ and $\overrightarrow{F 2}$, with magnitudes 10 lbs and 12 lbs respectively, act on an object P as shown in the diagram below. Find the direction and magnitude of the resultant force \vec{F} acting on P .

Problem 3. Find the vector projection of $\langle 4,8\rangle$ onto $\langle 2,1\rangle$.

Problem 4. A parametric curve is given by $x=2 \sin \theta, y=3 \cos \theta$. Find its Cartesian equation.

Problem 5. Find the vector equation of a line passing through the points $(1,2)$ and $(-1,4)$.

Problem 6. Evaluate the following limits:
a) $\lim _{x \rightarrow 2^{-}} \frac{x-1}{x^{2}(x+2)}$
b) $\lim _{x \rightarrow-3} \frac{x^{2}-x-12}{x+3}$
c) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+4 x}}{4 x+1}$
d) $\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-3 x}}{e^{3 x}+e^{-3 x}}$
e) $\lim _{x \rightarrow \infty}\left[\ln \left(3 x^{2}\right)-\ln \left(6 x^{4}-3 x+1\right)\right]$

Problem 7. Find the derivative or $\frac{d y}{d x}$ for the following:
a) $y=x^{3}\left(4 x^{5}+5\right)^{8}$
b) $f(x)=\sqrt{\cos \left(\sin ^{2} x\right)}$
c) $y=\ln \left(x e^{-x}\right)$
d) $e^{y} \sin x=x+x y$

Problem 8. Find the equation of the tangent line for the curve given by $x=1-t^{3}, y=t^{2}-3 t+1$ at $t=2$.

Problem 9. Differentiate $y=\frac{e^{x}\left(x^{2}+2\right)^{3}}{(x+1)^{4}\left(x^{2}+5\right)^{2}}$

Problem 10. Differentiate $y=\left(4 x^{2}-x+1\right)^{\sin x}$

Problem 11. A culture starts with 1000 bacteria and the population triples every half hour.
a) Find an expression for the number of bacteria after t hours.
b) Find the number of bateria present in the sample after 20 minutes.

Problem 12. The length of a rectangle is decreasing at a rate of $1 \mathrm{~m} / \mathrm{s}$ while the area of the rectangle remains constant. How fast is the width of the rectangle increasing when its length is 10 m and its width is 5 m ?

Problem 13. Find the values of a and c which would make $f(x)$ continuous and differentiable at $x=3$.

$$
f(x)= \begin{cases}a x^{2}-9 x+c & \text { if } x<3 \\ 2 a x^{2}+a^{2} x-5 & \text { if } x \geq 3\end{cases}
$$

Problem 14. Use linear approximation to find an approximate value for $(1.97)^{6}$.

Problem 15. Find the absolute maxima and the absolute minima for $f(x)=1+27 x-x^{3}$ on the interval $[0,4]$.

Problem 16. Find the intervals on which $f(x)=x^{5}-15 x^{4}+6$ is decreasing and concave down.

Problem 17. Find the following limits.
a) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
b) $\lim _{x \rightarrow 0^{+}} x \ln x$
c) $\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$
d) $\lim _{x \rightarrow \infty} x^{3 / x}$

Problem 18. Approximate the area under the curve $f(x)=x^{2}+1$ on the interval $[1,7]$ using 3 rectangles of equal width and the left endpoints of each rectangle.

Problem 19. If $g(x)=\int_{0}^{x} f(t) d t$, where the graph of $f(t)$ is given below for $0 \leq x \leq 10$, evaluate $g(4)$ and $g(10)$. Where is $g(x)$ decreasing?

Problem 20. Find $g^{\prime}(x)$ if $g(x)=\int_{x^{2}}^{\sin x} \frac{\cos t}{t} d t$.

Problem 21. Evaluate the following integrals:
a) $\int \frac{1+\sqrt{x}+x}{x} d x$
b) $\int\left(2 x^{3}-6 x+\frac{3}{x^{2}+1}\right) d x$
c) $\int_{0}^{\pi}\left(5 e^{x}+\sin (2 x)\right) d x$
d) $\int x^{3} \sqrt{1+x^{2}} d x$
e) $\int_{1}^{e} \frac{\ln x}{x} d x$

Problem 22. The graph of the second derivative $f^{\prime \prime}(x)$ of a function $f(x)$ is shown.

a) On what intervals is f concave up?
b) On what intervals is f concave down?
c) What are the inflection points of f ?
d) Where does f have a local maxima? A local minima?

