FINAL EXAM REVIEW

Problem 1. If $\vec{a} = \langle 4, 3 \rangle$ and $\vec{b} = \langle -2, 1 \rangle$, find the unit vector \vec{a} and the vector $(5\vec{a} - 2\vec{b})$.

Problem 2. Two forces $\vec{F1}$ and $\vec{F2}$, with magnitudes 10 lbs and 12 lbs respectively, act on an object P as shown in the diagram below. Find the direction and magnitude of the resultant force \vec{F} acting on P.

 $\mathbf{2}$

Problem 3. Find the vector projection of $\langle 4, 8 \rangle$ onto $\langle 2, 1 \rangle$.

Problem 4. A parametric curve is given by $x = 2\sin\theta$, $y = 3\cos\theta$. Find its Cartesian equation.

Problem 5. Find the vector equation of a line passing through the points (1, 2) and (-1, 4).

Problem 6. Evaluate the following limits: r-1

a)
$$\lim_{x \to 2^-} \frac{x-1}{x^2(x+2)}$$

b)
$$\lim_{x \to -3} \frac{x^2 - x - 12}{x + 3}$$

c)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 4x}}{4x + 1}$$

d)
$$\lim_{x \to \infty} \frac{e^x - e^{-3x}}{e^{3x} + e^{-3x}}$$

e)
$$\lim_{x \to \infty} [\ln(3x^2) - \ln(6x^4 - 3x + 1)]$$

Problem 7. Find the derivative or $\frac{dy}{dx}$ for the following: a) $y = x^3(4x^5 + 5)^8$

b)
$$f(x) = \sqrt{\cos(\sin^2 x)}$$

c)
$$y = \ln(xe^{-x})$$

d) $e^y \sin x = x + xy$

Problem 8. Find the equation of the tangent line for the curve given by $x = 1-t^3$, $y = t^2 - 3t + 1$ at t = 2.

4

Problem 9. Differentiate $y = \frac{e^x(x^2+2)^3}{(x+1)^4(x^2+5)^2}$

Problem 10. Differentiate $y = (4x^2 - x + 1)^{\sin x}$

 $\mathbf{6}$

Problem 11. A culture starts with 1000 bacteria and the population triples every half hour. a) Find an expression for the number of bacteria after t hours.

b) Find the number of bateria present in the sample after 20 minutes.

Problem 12. The length of a rectangle is decreasing at a rate of 1m/s while the area of the rectangle remains constant. How fast is the width of the rectangle increasing when its length is 10m and its width is 5m?

Problem 13. Find the values of a and c which would make f(x) continuous and differentiable at x = 3. $\int_{ax^2 - 9x + c} \text{if } x < 3$

$$f(x) = \begin{cases} ax & 5x + c & 1 & x < 5\\ 2ax^2 + a^2x - 5 & \text{if } x \ge 3 \end{cases}$$

Problem 14. Use linear approximation to find an approximate value for $(1.97)^6$.

8

Problem 15. Find the absolute maxima and the absolute minima for $f(x) = 1 + 27x - x^3$ on the interval [0, 4].

Problem 16. Find the intervals on which $f(x) = x^5 - 15x^4 + 6$ is decreasing and concave down.

Problem 17. Find the following limits.

a) $\lim_{x \to 0} \frac{\sin x - x}{x^3}$

b) $\lim_{x \to 0^+} x \ln x$

c)
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$

d)
$$\lim_{x \to \infty} x^{3/x}$$

10

Problem 18. Approximate the area under the curve $f(x) = x^2 + 1$ on the interval [1,7] using 3 rectangles of equal width and the left endpoints of each rectangle.

Problem 19. If $g(x) = \int_0^x f(t) dt$, where the graph of f(t) is given below for $0 \le x \le 10$, evaluate g(4) and g(10). Where is g(x) decreasing?

Problem 20. Find g'(x) if $g(x) = \int_{x^2}^{\sin x} \frac{\cos t}{t} dt$.

Problem 21. Evaluate the following integrals: a) $\int \frac{1+\sqrt{x}+x}{dx} dx$

a)
$$\int \frac{1+\sqrt{x+x}}{x} dx$$

b)
$$\int \left(2x^3 - 6x + \frac{3}{x^2 + 1}\right) dx$$

c)
$$\int_0^\pi \left(5e^x + \sin(2x) \right) \, dx$$

d)
$$\int x^3 \sqrt{1+x^2} \, dx$$

e)
$$\int_{1}^{e} \frac{\ln x}{x} dx$$

a) On what intervals is f concave up?

b) On what intervals is f concave down?

c) What are the inflection points of f?

d) Where does f have a local maxima? A local minima?