WEEK-IN-REVIEW 4
 (Limits at Infinity (2.6), Rates of Change (2.7, 2.8))

Problem 1. Find the following limits, if they exists.
(a) $\lim _{x \rightarrow \infty} \frac{4 x^{2}+3 x+5}{2-x-5 x^{2}}$.
(b) $\lim _{x \rightarrow 5} \frac{2 x^{2}-13 x+15}{x^{2}-3 x-10}$.
(c) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+3 x+1}}{7 x-3}$.
(d) $\lim _{x \rightarrow 2^{+}} \frac{2 x}{4-x^{2}}$.
(e) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+3 x+1}-x$.
(f) $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)$.
(g) $\lim _{h \rightarrow 0} \frac{(5+h)^{2}-25}{h}$.
(h) $\lim _{x \rightarrow 7} \frac{\frac{1}{7}-\frac{1}{x}}{2 x-14}$.
(i) $\lim _{x \rightarrow 3} \frac{2 x^{2}-6 x}{|x-3|}$.
(j) $\lim _{x \rightarrow \infty} \frac{1}{5+e^{-x}}$.
(k) $\lim _{x \rightarrow \infty} \frac{3 e^{2 x}+e^{-7 x}}{4 e^{2 x}-3 e^{-7 x}}$.
(l) $\lim _{x \rightarrow-\infty} \frac{3 e^{2 x}+e^{-7 x}}{4 e^{2 x}-3 e^{-7 x}}$
(m) $\lim _{x \rightarrow-3^{-}} e^{x /(x+3)}$
(n) $\lim _{x \rightarrow \infty}\left[\ln \left(3 x^{6}+1\right)-\ln \left(x^{6}+5\right)\right]$.
(o) $\lim _{x \rightarrow \infty}\left[\ln \left(3 x^{4}+1\right)-\ln \left(x^{6}+5\right)\right]$.
(p) $\lim _{x \rightarrow \infty}\left[\ln \left(2^{3 x}+2\right)\right]$.
(q) $\lim _{x \rightarrow \infty} \arctan \left(\frac{5 x^{2}+1}{5 x^{2}+3}\right)$.

Problem 2. Given the function $f(x)=\sqrt{2 x+3}$,
(a) Use the limit definition of the derivative to find $f^{\prime}(x)$.
(b) Find the equation of the tangent line to the function $f(x)$ at $x=2$.

Problem 3. The position function of a moving particle is given by $f(t)=4 t^{2}-3 t$, where t represents time in seconds.
(a) Find the average velocity of the particle from $t=1$ to $t=4$.
(b) Find the instantaneous velocity of the particle at time $t=2$.

Problem 4. Given that $f(x)=\frac{2}{5 x+1}$, use the limit definition of the derivative to find $f^{\prime}(x)$.

Problem 5. Given that the graph of a function $f(x)$ passes through the point $(-1,4)$, and that the equation of a line tangent to $f(x)$ at this point is given by $y=5-3 x$, what is $\lim _{x \rightarrow(-1)} \frac{f(x)-4}{x+1}=$?

