Week-in-Review 6: Chapter 3.1-3.4

(Rules of derivatives, Product Rule, Quotient Rule, Chain Rule)

Problem 1. Find the derivatives for the following:
a $f(x)=3 x-2 \sqrt{1-x}+\frac{1}{2 \sqrt{1-x}}$
b $f(x)=x \sin ^{2} x \cos x$
c $f(x)=(\sin x+\cos x)\left(x^{2}-\tan x\right)$
d $f(x)=\sqrt{x^{2}+3 x+1}-x$
e $f(x)=\frac{4-x^{2}}{\sqrt{x}}$
f $f(x)=\left(x^{3}-5\right)^{10}$
g $f(x)=\frac{(2 x+3)^{3}}{\left(4 x^{2}+1\right)^{8}}$
h $f(x)=\frac{x^{2} e^{x}}{x^{2}+3 e^{x}}$
i $f(x)=\sqrt{2+e^{x}+\sin ^{2} x}$
j $f(x)=\frac{4+x}{x e^{x}}$
$\mathrm{k} f(x)=\tan \left(\sec \left(\sin \left(7 x^{3}\right)\right)\right)$
l $f(x)=2^{e^{x}}$

Problem 2. If $\vec{r}(t)=<4 \sin t, 4 \cos t>$ is the position vector of a moving particle at time t, find the velocity and speed of the particle at the point $(2,-2 \sqrt{3})$. What is the particle's acceleration at this point?

Problem 3. Find the equation of the tangent line to the curve $y=x^{4}+2 e^{x}$ at the point $(0,2)$.

Problem 4. Find the equation of the tangent line to the curve $y=2 x e^{x}$ at the point $(0,0)$.

Problem 5. Given that $f(2)=10$ and $f^{\prime}(x)=x^{2} f(x)$ for all x, find $f^{\prime \prime}(2)$.

Problem 6. If we define $u(x)=f(g(x)), v(x)=g(f(x))$ and $w(x)=g(g(x))$, use the graph below to find the values of $u^{\prime}(1), v^{\prime}(1)$ and $w^{\prime}(1)$.

Problem 7. Find the equation of the tangent line for $f(x)=2 x \sin (x)$ at the point $(\pi / 2, \pi)$.

Problem 8. If $g(x)=\left(2-x^{2}\right)^{6}$, find $g(0), g^{\prime}(0), g^{\prime \prime}(0)$ and $g^{3}(0)$.

Problem 9. Find the second derivatives for the following
a $f(u)=\frac{1}{\sqrt{1-u}}$.
b $f(x)=e^{x}-5 x^{2}$.
c $f(t)=\left(t^{3}+1\right) e^{t}$

Problem 10. Find all the values of x where the tangent line to the function $f(x)=2 \sin x+\sin ^{2} x$ is horizontal.

Problem 11. Given that $f(x)=x \sin (x)$, find the $35^{\text {th }}$ derivative of $f(x)$.

Problem 12. Find the $n^{\text {th }}$ derivative for the function $y=\frac{1}{x^{2}}$

