WEEK-IN-REVIEW 6: CHAPTER 3.1 - 3.4 (RULES OF DERIVATIVES, PRODUCT RULE, QUOTIENT RULE, CHAIN RULE)

Problem 1. Find the derivatives for the following: a $f(x) = 3x - 2\sqrt{1-x} + \frac{1}{2\sqrt{1-x}}$

b $f(x) = x \sin^2 x \cos x$

 $f(x) = (\sin x + \cos x)(x^2 - \tan x)$

d
$$f(x) = \sqrt{x^2 + 3x + 1} - x$$

$$e f(x) = \frac{4 - x^2}{\sqrt{x}}$$

f
$$f(x) = (x^3 - 5)^{10}$$

g
$$f(x) = \frac{(2x+3)^3}{(4x^2+1)^8}$$

h
$$f(x) = \frac{x^2 e^x}{x^2 + 3e^x}$$

$$f(x) = \sqrt{2 + e^x + \sin^2 x}$$

$$j f(x) = \frac{4+x}{xe^x}$$

$$k f(x) = \tan(\sec(\sin(7x^3)))$$

 $l f(x) = 2^{e^x}$

4

Problem 2. If $\vec{r}(t) = \langle 4 \sin t, 4 \cos t \rangle$ is the position vector of a moving particle at time t, find the velocity and speed of the particle at the point $(2, -2\sqrt{3})$. What is the particle's acceleration at this point?

Problem 3. Find the equation of the tangent line to the curve $y = x^4 + 2e^x$ at the point (0, 2).

6

Problem 4. Find the equation of the tangent line to the curve $y = 2xe^x$ at the point (0,0).

Problem 5. Given that f(2) = 10 and $f'(x) = x^2 f(x)$ for all x, find f''(2).

Problem 6. If we define u(x) = f(g(x)), v(x) = g(f(x)) and w(x) = g(g(x)), use the graph below to find the values of u'(1), v'(1) and w'(1).

8

Problem 7. Find the equation of the tangent line for $f(x) = 2x \sin(x)$ at the point $(\pi/2, \pi)$.

Problem 8. If $g(x) = (2 - x^2)^6$, find g(0), g'(0), g''(0) and $g^3(0)$.

Problem 9. Find the second derivatives for the following $\frac{1}{1}$

$$a f(u) = \frac{1}{\sqrt{1-u}}.$$

$$b f(x) = e^x - 5x^2.$$

c
$$f(t) = (t^3 + 1)e^t$$

10

Problem 10. Find all the values of x where the tangent line to the function $f(x) = 2 \sin x + \sin^2 x$ is horizontal.

Problem 11. Given that $f(x) = x \sin(x)$, find the 35^{th} derivative of f(x).

Problem 12. Find the n^{th} derivative for the function $y = \frac{1}{x^2}$