WEEK-IN-REVIEW 7: CHAPTER 3.5, 3.6, K1 (IMPLICIT DIFFENTIATION, DERIVATIVES ON INVERSE TRIGONOMETRIC, LOGARITHMIC AND VECTOR FUNCTIONS.)

Problem 1. Find the following derivatives: (a) $9y^4 - 12x^2y^2 + 5x^2 = 11x$

(b) $\sqrt{y}\cos x + \sin(3y) - \cot^2(3x) = 1$

 $\mathbf{2}$

(c)
$$f(x) = \ln(x^2 + y^2)$$

(d)
$$f(x) = \ln(x^2 e^{-2x})$$

(e)
$$f(x) = \tan[\log(ax+b)]$$

(f)
$$f(x) = \log_2(x^3 + 6x)^5$$

(g)
$$f(x) = x \ln(\sin(3x))$$

(h)
$$f(x) = \arcsin(e^x)$$

(i)
$$f(x) = \tan^{-1}(5x^2)$$

(j)
$$f(x) = \ln\left(\frac{x^2+1}{5xe^x(x^3+11)^4}\right)$$

(k)
$$f(x) = \left\langle \frac{\frac{1}{x} - \frac{1}{3}}{x - 3}, 2x - 3 \right\rangle$$
. State the domain of f and f' .

Problem 2. Use log differentiation to find the following derivatives. a $f(x) = x^x$

b $f(x) = (\sin x)^{\cos x}$

6

Problem 3. Find the slope of the tangent line to the curve $\sec(x+y) - \tan(x-y) = 1$ at the point (π, π) .

Problem 4. Find the equation of the tangent line to the curve $y = x^2 \ln(x)$ at the point (1, 0).

8

Problem 5. Find a tangent vector of length 5 to the curve $\vec{r}(t) = (2t \sin t)\vec{i} + (3 - 4\cos(t))\vec{j}$ at the point where $t = \frac{\pi}{2}$

Problem 6. Find the velocity, acceleration and speed of the particle with the position function given by $\vec{r}(t) = \langle 4\cos(2t), 3\sin(2t) \rangle$ at the time $t = \frac{\pi}{3}$.