TEXAS A\&M UNIVERSITY
Math Learning Center

Week-in-Review 7: Chapter 3.5, 3.6, K1
 (Implicit Diffentiation, Derivatives on Inverse Trigonometric, Logarithmic and Vector Functions.)

Problem 1. Find the following derivatives:
(a) $9 y^{4}-12 x^{2} y^{2}+5 x^{2}=11 x$
(b) $\sqrt{y} \cos x+\sin (3 y)-\cot ^{2}(3 x)=1$
(c) $f(x)=\ln \left(x^{2}+y^{2}\right)$
(d) $f(x)=\ln \left(x^{2} e^{-2 x}\right)$
(e) $f(x)=\tan [\log (a x+b)]$
(f) $f(x)=\log _{2}\left(x^{3}+6 x\right)^{5}$
(g) $f(x)=x \ln (\sin (3 x)$
(h) $f(x)=\arcsin \left(e^{x}\right)$
(i) $f(x)=\tan ^{-1}\left(5 x^{2}\right)$
(j) $f(x)=\ln \left(\frac{x^{2}+1}{5 x e^{x}\left(x^{3}+11\right)^{4}}\right)$
(k) $f(x)=\left\langle\frac{\frac{1}{x}-\frac{1}{3}}{x-3}, 2 x-3\right\rangle$. State the domain of f and f^{\prime}.

Problem 2. Use log differentiation to find the following derivatives.
a $f(x)=x^{x}$
b $f(x)=(\sin x)^{\cos x}$

Problem 3. Find the slope of the tangent line to the curve $\sec (x+y)-\tan (x-y)=1$ at the point (π, π).

Problem 4. Find the equation of the tangent line to the curve $y=x^{2} \ln (x)$ at the point $(1,0)$.

Problem 5. Find a tangent vector of length 5 to the curve $\vec{r}(t)=(2 t \sin t) \vec{i}+(3-4 \cos (t)) \vec{j}$ at the point where $t=\frac{\pi}{2}$

Problem 6. Find the velocity, acceleration and speed of the particle with the position function given by $\vec{r}(t)=<4 \cos (2 t), 3 \sin (2 t)>$ at the time $t=\frac{\pi}{3}$.

