Week-in-Review 9: Exam 2 Review
 (Ch 3.1-3.10, K1, K2: Derivatives and their Applications.)

Problem 1. Find the following derivatives:
a) $y=\sin ^{5}\left(\sec \left(\sqrt{x^{2}+1}\right)\right)$
b) $f(x)=x^{2} \arcsin (x)$
c) $f(x)=6^{2^{x}}+\sqrt[3]{3 x^{2}}$
d) $y=\ln \left(x^{2} e^{-3 x}\right)$
e) $f(x)=x^{2} \ln (3+2 x)$
f) $y=x^{3} e^{x} \tan \left(x^{2}\right)$
g) $f(x)=e^{x^{3}+\sin x}$
h) $f(x)=\frac{(2-x)^{2}}{\sin x}$
i) $y=\log \left(\sin ^{2}(5 x)\right)$
j) $f(x)=\frac{7 \pi}{\sqrt{5 x+e^{x}}}$

Problem 2. If $f(x)=\sin ^{4}(x)$, find $f^{\prime}(\pi / 3)$.

Problem 3. Find the $25^{t h}$ derivative of $f(x)=x e^{-x}$.

Problem 4. For the parametric curve given by $x=t^{3}-3 t^{2}-9 t+1, y=t^{3}+3 t^{2}-9 t+1$, a) Find the point(s) on the curve where the tangent lines are horizontal or vertical.
b) Find the equation of the tangent line when $t=2$.

Problem 5. Find the slope of the tangent line to the curve $3 y^{3}-x y^{2}+3=0$ at the point $(0,-1)$.

Problem 6. For $f(x)=\frac{x^{3}+1}{x^{2}+1}$, find the equation of the tangent line at the point $x=-1$.

Problem 7. Find the velocity, speed and acceleration of each particle defined below: (t is given in seconds and distance is in meters.)
a) At time $t=2$ when its position is given by $\vec{r}(t)=<\sqrt{t^{2}+5}, t>$.
b) At time $t=\pi / 3$ when its position is given by $\vec{r}(t)=<4 \cos (2 t), 3 \sin (2 t)>$.

Problem 8. The population of a bacteria culture grows at a rate proportional to its size. After 2 hours the bacteria population was 1000 and after 5 hours, the bacteria population was 7000 . After how long will the bacteria culture attain a population of 35,000 ?

Problem 9. Find the half life of the radioactive isotope Strontium 90 if a sample decays to 95% of its original mass after 1 year.

Problem 10. Consider a right angled triangle. If the horizontal leg of the trangle is increasing at the rate of $5 \mathrm{~m} / \mathrm{s}$ and the vertical leg of the triangle is decreasing at the rate of $6 \mathrm{~m} / \mathrm{s}$, at what rate is the hypotenuse changing when the horizontal leg is 12 m and the vertical leg is 9 m ?

Problem 11. A boat is being pulled into a dock by a pulley that is fixed 1 m above the water level, at a rate of $1 \mathrm{~m} / \mathrm{s}$. How fast is the boat approaching the dock when the boat is 8 meters away from the dock?

Problem 12. A kite flying 100 ft above the ground moves horizontally at a speed of $8 \mathrm{ft} / \mathrm{s}$. At what rate is the angle between the string and the horizon decreasing when the string is 200 ft long?

Problem 13. Find the linear approximation for $f(x)=\frac{1}{\sqrt{4+x}}$ at $a=0$. Use the linear approximation model to estimate the value of $\frac{1}{\sqrt{4.01}}$.

Problem 14. Use linear approximation to estimate the value of $\sqrt[3]{8.012}$.

Problem 15. The radius of a sphere was measured to be 5 cm with a maximum error in measurement of 0.1 cm . Use differentials to estimate the maximum error possible in the calculated volume of the sphere. What is the percentage relative error?

