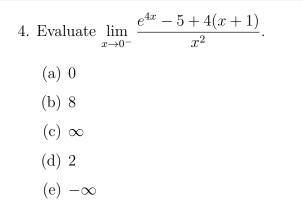
MATH 151- WEEK-IN-REVIEW 12 Alexandra L. Foran

FINAL EXAM REVIEW

- 1. For a continuous function f, if f'(3) = 0 and f''(3) = 7, which of these statements do we know to be true about the graph of f at x = 3?
 - (a) There is a local maximum at x = 3.
 - (b) There is an absolute maximum at x = 3.
 - (c) There is a local minimum at x = 3.
 - (d) There is an absolute minimum at x = 3.
 - (e) There is not enough information to determine the behavior of the graph at x = 3.

2. Find the x-values where local maximums or local minimums occur for $y = \frac{24}{x^2} + 12x + b$.

- (a) local min at $x = \sqrt[3]{4}$ only
- (b) local max at x = 0, local min at $x = \sqrt[3]{4}$
- (c) local min at x = 0, local max at $x = \sqrt[3]{4}$
- (d) local max at $x = \sqrt[3]{4}$ only
- (e) local max at x = 0 only
- 3. The function f(x) is defined at all real numbers except 8 and $f'(x) = \frac{-7(x-1)(x+4)}{(x-8)^4}$. At what x-value does f(x) have a local minimum?
 - (a) x = 8 only
 - (b) x = 1 only
 - (c) x = -4 only
 - (d) x = 1 and x = 8 only
 - (e) f(x) does not have a local maximum.



- 5. Approximate the area under the curve $f(x) = x^2 1$ on the interval [2, 8] using three rectangles of equal width and midpoints.
 - (a) 106
 - (b) 226
 - (c) 80
 - (d) 304
 - (e) 160
- 6. Rancher Wyatt wants to fence a new pasture using a straight river as one side of the boundary. If Rancher Wyatt has 1200 yards of fencing materials, what are the **<u>DIMENSIONS</u>** of the largest area of the pasture that Rancher Wyatt can enclose?
 - (a) 300 yards x 300 yards
 - (b) 300 yards x 600 yards
 - (c) 250 yards x 700 yards
 - (d) 90,000 square yards
 - (e) 180,000 square yards

- 7. A particle has an acceleration given by a(t) = 12t on the interval [0, 10]. If this particle has an initial velocity of 12 meters per second and has a position of 15 meters at t = 1, find the position at t = 5.
 - (a) 339 meters
 - (b) 315 meters
 - (c) 325 meters
 - (d) 311 meters
 - (e) 301 meters

8. Let f be a differentiable function such that f(3) = 1 and f'(3) = -3. If $h(x) = \frac{2f(x)}{x^2 + 1}$, find h'(3).

(a)
$$-\frac{72}{100}$$

(b) $-\frac{48}{100}$
(c) $\frac{72}{100}$
(d) $-\frac{72}{10}$
(e) $\frac{48}{10}$

- 9. Find the 4003rd derivative of $g(x) = 2\sin(5x)$.
 - (a) $2 \cdot 5^{4003} \cos(5x)$
 - (b) $-2 \cdot 5^{4003} \sin(5x)$
 - (c) $2 \cdot 5^{4003} \sin(5x)$
 - (d) $2^{4003} \cdot 5^{4003} \sin(5x)$
 - (e) $-2 \cdot 5^{4003} \cos(5x)$

10. Sand is being dropped at a rate of 10 ft³/min onto a cone-shaped pile. If the height of the pile is always twice the base radius, at what rate is the height increasing when the pile is 8 ft high? Recall the volume formula for a cone is $V = \frac{\pi}{3}r^2h$.

(a)
$$\frac{5}{64\pi}$$
 ft/min
(b) $\frac{5}{8\pi}$ ft/min
(c) $\frac{5}{32\pi}$ ft/min
(d) $\frac{10}{9\pi}$ ft/min
(e) $\frac{10}{27\pi}$ ft/min

- 11. Find the value c that satisfies the conclusion of the Mean Value Theorem for the function $f(x) = -3x^2 + 5x + 5$ on the interval [0, 3].
 - (a) $\frac{17}{6}$ (b) 3 (c) $\frac{3}{2}$ (d) 0 (e) $\frac{17}{18}$

12. Use logarithmic differentiation to find the derivative of $f(x) = \frac{(x^3 + 2x)^{400}}{(1+x)^{300}}$.

(a)
$$f'(x) = \left[\frac{400(3x^2+2)}{x^3+2x} - \frac{300}{1+x}\right] \cdot \frac{(x^3+2x)^{400}}{(1+x)^{300}}$$

(b) $f'(x) = \left[\frac{400}{x^3+2x} - \frac{300}{1+x}\right] \cdot \frac{(x^3+2x)^{400}}{(1+x)^{300}}$
(c) $f'(x) = \frac{400(3x^2+2)}{x^3+2x} - \frac{300}{1+x}$
(d) $f'(x) = \frac{400(3x^2+2)(x^3+2x)^{398}}{(1+x)^{300}} - \frac{300(x^3+2x)^{400}}{(1+x)^{301}}$
(e) $f'(x) = \frac{100(x^3+2x)^{398}(9x^3+12x^2+2x+8)}{(1+x)^{301}}$

АМ

13. Find the *t*-values where the tangent line to the following parametrically defined curve is horizontal or vertical.

$$x = 2t^3 - t^2 + 6$$
 and $y = -t^3 + \frac{9}{2}t^2 - 6t$

- (a) horizontal tangents occur at t = 1, 2; vertical tangents occur at $t = 0, \frac{1}{3}$
- (b) horizontal tangents occur at $t = 0, \frac{1}{3}$; vertical tangents occur at t = 1, 2
- (c) horizontal tangents occur at $t = \frac{2}{3}$, 1; vertical tangents occur at t = 0
- (d) horizontal tangents occur at t = 0; vertical tangents occur at $t = \frac{2}{3}, 1$
- (e) horizontal tangents occur at t = 1; there are no vertical tangents
- 14. Which of the following is a vector of unit length tangent to $\langle \sqrt{10t+5}, e^{4t-8} \rangle$ at t = 2?

(a)
$$\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$$

(b) $\left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$
(c) $\left\langle \frac{1}{\sqrt{5}}, \frac{4}{\sqrt{5}} \right\rangle$
(d) $\langle 1, 1 \rangle$
(e) $\left\langle 1, \frac{4}{3} \right\rangle$

15. Find the values of the constants a and b that make the following piecewise function differentiable everywhere:

$$f(x) = \begin{cases} ax^3 + 16x & \text{if } x < 1\\ 5x^2 + b & \text{if } x \ge 1 \end{cases}$$

- (a) a = 16, b = 5
- (b) a = -2, b = 9
- (c) $a = -\frac{5}{3}, b = \frac{28}{3}$
- (d) a = 1, b = 0
- (e) there is not enough information to determine a and b

16. Suppose
$$\int_{5}^{9} g(x) dx = 4$$
. Evaluate $\int_{5}^{9} (3 - 4g(x)) dx$
(a) 39
(b) -13
(c) 19
(d) -4
(e) -36

17. Let $f(x) = \int_{\tan x}^{x} \frac{1}{\sqrt{4+t^3}} dt$. Find f'(x)(a) $f'(x) = -\frac{\tan(x)}{\sqrt{4+\tan^3(x)}} + \frac{1}{\sqrt{4+x^3}}$ (b) $f'(x) = \frac{\sec^2(x)}{\sqrt{4+\tan^3(x)}} + \frac{1}{\sqrt{4+x^3}}$ (c) $f'(x) = -\frac{\sec^2(x)}{\sqrt{4+\tan^3(x)}} + \frac{1}{\sqrt{4+x^3}}$ (d) $f'(x) = \frac{\tan(x)}{\sqrt{4+\tan^3(x)}} + \frac{1}{\sqrt{4+x^3}}$ (e) f'(x) does not exist

18. Evaluate
$$\int_{1}^{2} \left(\frac{9}{x^{5}} - \frac{2}{x}\right) dx$$

(a) $\frac{135}{64} - 2\ln(2)$
(b) $-\frac{135}{64} - \ln(2)$
(c) $\frac{135}{64} + 2\ln(2)$
(d) $-\frac{135}{64} - 2\ln(2)$
(e) $\frac{135}{64} + \ln(2)$

19. Evaluate
$$\int \left(3x^2 - 10 + \frac{3}{x^2 + 1} \right) dx$$

(a) $\frac{x^3}{3} - 10x + 3 \arctan(x) + C$
(b) $\frac{x^3}{3} - 10x + 3 \arcsin(x) + C$
(c) $x^3 - 10x + 3 \arctan(x) + C$
(d) $x^3 - 10x + 3 \arctan(x) + C$
(e) $\frac{x^3}{3} - 10x + 3 \tan(x) + C$

- 20. The velocity function, in meters per second, is v(t) = 3t 7. What is the displacement of the particle in the first four seconds it moves?
 - (a) 4 m
 - (b) $-32 \,\mathrm{m}$
 - (c) 32 m
 - (d) 12 m
 - (e) $-4 \,\mathrm{m}$
- 21. A plane is flying at 850 mph at N45°E. The wind is blowing at 30mph S60°E. Find the true direction of the plane.

(a)
$$\theta = \arctan\left(\frac{425\sqrt{2} + 15\sqrt{3}}{425\sqrt{2} - 15}\right)$$

(b) $\theta = \arctan\left(\frac{425\sqrt{2} + 15\sqrt{3}}{425\sqrt{2} + 15}\right)$
(c) $\theta = \arctan\left(\frac{15 - 425\sqrt{2}}{15\sqrt{3} + 425\sqrt{2}}\right)$
(d) $\theta = \arctan\left(\frac{425\sqrt{2} - 15}{425\sqrt{2} + 15\sqrt{3}}\right)$
(e) $\theta = \arctan\left(\frac{15\sqrt{3} + 425\sqrt{2}}{15 - 425\sqrt{2}}\right)$

- 22. A horizontal force of 20 pounds is acting on a box as it is pushed up a ramp that is 5 feet long and inclined at an angle of 60° above the horizontal. Find the work done on the box.
 - (a) 50 ft-lb
 - (b) $50\sqrt{3}$ ft-lb
 - (c) $50\sqrt{2}$ ft-lb
 - (d) 100 ft-lb
 - (e) 10 ft-lb
- 23. Given the points A(1,0), B(0,2) and C(3,4), find the angle, θ , located at the vertex A. That is, $\angle BAC$.

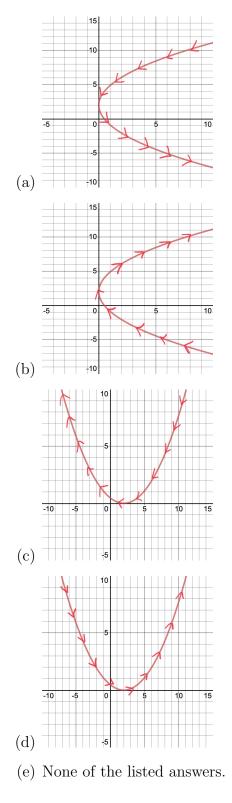
(a)
$$\theta = \arccos\left(\frac{3}{5}\right)$$

(b) $\theta = \arccos\left(-\frac{1}{\sqrt{65}}\right)$
(c) $\theta = 180^{\circ}$
(d) $\theta = \arccos\left(\frac{1}{\sqrt{65}}\right)$
(e) $\theta = \arccos\left(\frac{3}{\sqrt{17}}\right)$

24. Find the slope of the tangent line to the graph $x^2y^2 - 3y = 0$ at the point (1, -3).

(a) $-\frac{5}{2}$ (b) $\frac{5}{2}$ (c) -8(d) 2 (e) -2 25. Which of the following graphs would match the parametric equations?

$$x = 3t^2$$
 and $y = 2 - 5t$

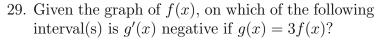


26. What is
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
?
(a) $\frac{5\pi}{6}$
(b) $-\frac{\pi}{6}$
(c) $-\frac{\pi}{3}$
(d) $\frac{2\pi}{3}$
(e) $-\frac{5\pi}{6}$

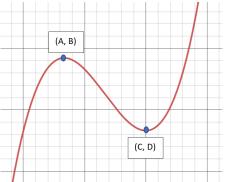
27. Calculate
$$\lim_{x \to 3^+} \frac{x^2 - 2x - 7}{x^2 - 5x + 6}$$
.
(a) $-\infty$
(b) ∞
(c) 1
(d) -4
(e) $-\frac{7}{6}$

28. Use linear approximation to estimate $\sqrt[3]{27.2}$

(a)	$\frac{801}{270}$
(b)	$\frac{1}{135}$
(c)	$\frac{406}{135}$
(d)	$\frac{402}{135}$
(e)	$\frac{803}{270}$



- (a) $(-\infty, A), (C, \infty)$
- (b) $(-\infty, B), (D, \infty)$
- (c) (A, C)
- (d) (B, D) only
- (e) none of these



30. Given $f(x) = \begin{cases} x+2 & \text{if } x < 2\\ x^2 & \text{if } x = 2. \end{cases}$ Which of the following statements is true? 5 & \text{if } x > 2 \end{cases}

- (a) f(x) is continuous from the left at x = 2.
- (b) f(x) is continuous from the right at x = 2.
- (c) f(x) is continuous at x = 2.
- (d) None of these is true.
- (e) f(x) is not continuous at x = 2 because $\lim_{x \to 2} f(x)$ exists but does not equal f(2).

31. Compute
$$\lim_{x \to -\infty} \frac{5e^{2x} - 8e^{-3x}}{3e^{2x} + 2e^{-3x}}$$
(a) 0
(b) $\frac{5}{3}$
(c) -4
(d) $-\infty$
(e) ∞

32. Calculate $\lim_{x \to \infty} [\ln(1+2x) - \ln(2+x)].$

- (a) 0
- (b) 1
- (c) $\ln(2)$
- (d) ∞
- (e) $-\infty$
- 33. The domain of f(x) is all real numbers and $f''(x) = 3x(x^2 16)(x 4)$. Give the x-coordinate of the inflection point(s).
 - (a) x = 0, x = 4, and x = -4
 - (b) x = 0 and x = -4 only
 - (c) x = 4 and x = -4 only
 - (d) x = 0 and x = 4 only
 - (e) f(x) has no inflection points.
- 34. An object is moving according to the equation of motion $s(t) = \cos t + \frac{1}{4}t^2$. Find the time(s) when the acceleration is zero for $0 \le t \le 2\pi$.
 - (a) $t = \frac{\pi}{3}, \frac{2\pi}{3}$ (b) $t = \frac{\pi}{6}, \frac{5\pi}{6}$ (c) $t = \frac{4\pi}{3}, \frac{5\pi}{3}$ (d) $t = \frac{7\pi}{6}, \frac{11\pi}{6}$ (e) $t = \frac{\pi}{3}, \frac{5\pi}{3}$
- 35. Find the derivative of the function $f(x) = \arcsin(e^{4x})$

(a)
$$f'(x) = \frac{4e^{4x}}{\sqrt{1 - e^{8x}}}$$

(b) $f'(x) = -\frac{4e^{4x}}{\sqrt{1 - e^{8x}}}$
(c) $f'(x) = \frac{4e^{4x}}{1 + e^{8x}}$
(d) $f'(x) = -\frac{4e^{4x}}{1 + e^{8x}}$
(e) $f'(x) = \frac{4e^{4x}}{1 - e^{8x}}$