Math 151- Week-In-Review 2
 Alexandra L. Foran
 Problem Statements

1. Find the scalar and vector projection of $\langle 3,2\rangle$ onto $\langle-1,5\rangle$.
2. Find the distance from the point $(-1,5)$ to the line $3 x+2 y=5$.
3. Eliminate the parameter to find the Cartesian equation of each curve below. Sketch the parametric curves and indicate the direction in which the curve is traced with an arrow.
(a) $x=5-t, y=2 t-2$

(b) $x=3 t+1, y=t^{2}-4$
(c) $x=\cos (\theta)+3, y=\sin (\theta)-5,0 \leq \theta \leq 2 \pi$

(a) $\mathbf{r}(t)=\langle\sqrt{t}, 2 t-5\rangle$

(b) $\mathbf{r}(t)=\left\langle\sin (\theta), \csc ^{2}(\theta)\right\rangle$

4. (a) Find a vector equation of the line passing through the points $(2,5)$ and $(-1,8)$.
(b) Find a vector passing through the point $(2,5)$ and perpendicular to the line in part (a).
(c) Find a vector that is perpendicular to the line $3 x-7 y=4$.
5. Determine if the following lines are perpendicular, parallel, or neither. If they are not parallel, find the point of intersection.
$L_{1}:\langle 5-3 t, t+1\rangle$
$L_{2}:\langle 4 s+1,12 s+1\rangle$
6. Find the exact value of the expression.
(a) $\arctan \left(\frac{\sqrt{3}}{3}\right)$
(b) $\arccos \left(-\frac{\sqrt{3}}{2}\right)$
(c) $\sin \left(2 \cdot \sin ^{-1}\left(\frac{3}{4}\right)\right)$
7. Simplify the expression.
(a) $\tan (\arcsin (x))$
(b) $\sin \left(\tan ^{-1}(x)\right)$
8. State the value of the given quantity, if it exists, from the given graph of $f(x)$ below.

$$
\begin{array}{lll}
\lim _{x \rightarrow-4^{-}} f(x) & \lim _{x \rightarrow 0^{-}} f(x) & \lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow-4^{+}} f(x) & \lim _{x \rightarrow-2^{+}} f(x) & \lim _{x \rightarrow 0^{+}} f(x) \\
\lim _{x \rightarrow-4} f(x) & \lim _{x \rightarrow 2^{+}} f(x) \\
f(-4) & f(-3) & \lim _{x \rightarrow 0} f(x) \\
\lim _{x \rightarrow 2} f(x) \\
& f(0) & f(2)
\end{array}
$$

