Math 151- Week-In-Review 8
 Alexandra L. Foran
 What does the derivative tell us?

1. Find the absolute maximum and minimum values of each of the following functions on the given interval.
(a) $y=\frac{1}{x}$ on $[1,5]$
(b) $f(x)=-5 x^{3}$ on $[-2,4]$
(c) $g(x)= \begin{cases}x+5 & -4<x \leq-1 \\ 3-x^{2} & -1<x<3 \\ 5-x & 3 \leq x<4\end{cases}$
(d) $h(x)=x^{2} e^{-x}$ on $[0,4]$
2. Find the critical values of the following functions.
(a) $f(x)=\frac{7-x}{x+1}$
(b) $g(x)=\left(x^{3}-12 x\right)^{1 / 3}$
3. Classify the local extrema of $f(x)$ given $f^{\prime}(x)=(x-3)^{5}(x+1)(x+7)^{8}$.
4. Given the graph of $f^{\prime}(x)$ below find the given intervals/values.

(a) Intervals where $f(x)$ is increasing
(b) Intervals where $f(x)$ is decreasing
(c) x-values of any local maxima
(d) x-values of any local minima
(e) Intervals where $f(x)$ is concave up
(f) Intervals where $f(x)$ is concave down
(g) x-values of any points of inflection

5 . Give the x-value of the inflection points of f for each part.

(a) The above curve is the graph of f.
(b) The above curve is the graph of f^{\prime}.
(c) The above curve is the graph of $f^{\prime \prime}$.
6. Sketch a graph of a continuous function where $x=-1$ is a critical number, but the function has no local extrema.

7. Sketch a graph of a continuous function where $x=-1$ is a local minimum and the function is not differentiable at $x=3$.

8. If $f^{\prime}(x)=x(4 x-1)^{2 / 3}$, find where the function is concave up. Are there any points of inflection?
9. If $f(x)=x^{2} \ln \left(\frac{x}{4}\right)$, find where the function is concave up. Are there any points of inflection?

