

Wir 5: Sections 14.5, 14.6

Section 14.5

- **Problem 1.** If $z = \ln(9x 6y)$, $x = \cos(e^t)$, $y = \sin^3(4t)$, find $\frac{dz}{dt}$.
- **Problem 2.** If $w = u^2 + 2uv$, $u = r \ln s$, v = 2r + s, find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$.
- **Problem 3.** If $z = x^4 + xy^3$, $x = uv^3 + w^4$, $y = u + ve^w$, find find $\frac{\partial z}{\partial u}$ when u = 1, v = 1, w = 0.
- **Problem 4.** The height and radius of a right circular cone are changing with respect to time. If the base radius of the cone is increasing at a rate of $\frac{1}{4}$ inches per minute while the height is decreasing at a rate $\frac{1}{10}$ inches per minute, find the rate in which the volume if the cone is changing when the radius of the cone is 2 inches and the height of the cone is 1 inch.
- **Problem 5.** The length l, width w and height h of a box change with time. At a certain instant, the dimensions are l = 1 m, w = 3 m and h = 2 m, and l and w are increasing at rate of 2 m/s while h is decreasing at a rate of 3 m/s. At that same instant, find the rate at which the surface area is changing.

Section 14.6

Problem 6. $f(x,y) = xy \sin x$, find the directional derivative at the point $\left(\frac{\pi}{2}, -1\right)$ in the direction $\mathbf{u} = \left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$.

Problem 7. Given $f(x, y) = x^3 y^2$, find the directional derivative at the point (-1, 2) in the direction $4\mathbf{i} - 3\mathbf{j}$.

With thanks to Amy Austin for generously sharing all of her WIR problems from last semester.

the point (1, 2).

TEXAS A&M UNIVERSITY Math Learning Center

Problem 8.	If $f(x, y) = x^2 e^{xy}$, find the rate of change of f at the point $(1, 0)$ in the direction of the point $P(1, 0)$ to the point $Q(5, 2)$.
Problem 9.	Find the gradient of $f(x, y) = x^2 + y^3 - 4xy$ at the point $(1, -1)$.
Problem 10.	 If f(x, y) = x²e^{-2y}, P(2, 0), Q(-3, 1). a.) Find the directional derivative at Q in the direction of P. b.) Find a vector in the direction in which f increases most rapidly at P, and find the rate of change of f in that direction.
Problem 11.	Find the maximum rate of change of $f(x,y) = \sin^2(3x+2y)$ at the point $\left(\frac{\pi}{6}, -\frac{\pi}{8}\right)$ and the direction in which it occurs.
Problem 12.	Find the equation of the tangent plane to the surface $f(x, y) = x^2 + y^2 - 4xy$ at