Wir 7: Sections 15.1, 15.2, 15.3

Section 15.1

Problem 1. Find
$$\int_0^{\pi/4} x \sin(3y) dy$$

Problem 2. Find
$$\int_1^e \frac{y \ln(x)}{x} dx$$

Problem 3. Evaluate
$$\int_0^2 \int_0^3 (xy+x+y) \, dy dx$$
 and $\int_0^3 \int_0^2 (xy+x+y) \, dx dy$

Fubini's Theorem: If f is continuous on the rectangle $R = [a, b] \times [c, d]$, then

(1)
$$\iint_R f(x,y) dA = \int_a^b \int_c^d f(x,y) dy dx = \int_c^d \int_a^b f(x,y) dx dy$$
.

(2) In the case where f(x,y) = g(x)h(y), then

$$\iint_{R} f(x,y) \, dA = \int_{a}^{b} \int_{c}^{d} g(x) h(y) \, dy dx = \int_{a}^{b} g(x) \, dx \int_{c}^{d} h(y) \, dy$$

Problem 4. Find $\iint_R \frac{x}{y^2} dA$, where $R = [0, 4] \times [1, 2]$

Problem 5. Find
$$\iint_R x \sec^2 y \, dA$$
, where $R = \{(x,y) | 0 \le x \le 2, 1 \le y \le \frac{\pi}{4} \}$

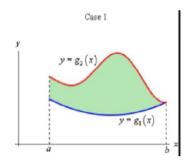
Problem 6. Find
$$\iint_{R} e^{2x+y} dA$$
, where $R = [0, \ln 2] \times [0, \ln 3]$

Problem 7. Find
$$\iint_R (y\cos(xy)) dA$$
, where $R = [0,2] \times [0,\pi]$

Problem 8. Find the volume of the solid S that is bounded by the paraboloid $x^2 + y^2 + z = 16$, $z = 0, 0 \le x \le 4, 0 \le y \le 4$.

Section 15.2

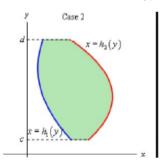
Type I: A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, that is $D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}.$



If f is continuous on a type I region $D = \{(x,y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$, then

$$\iint_{R} f(x, y) dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy dx$$

Type II: A plane region D is said to be of type II if it lies between the graphs of two continuous functions of y, that is $D = \{(x, y) | c \le y \le d, h_1(y) \le x \le h_2(y)\}.$



If f is continuous on a type II region $D = \{(x,y) | c \le y \le d, h_1(y) \le x \le h_2(y) \}$, then

$$\iint_D f(x,y) \, dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \, dx dy$$

Math 251 – Spring 2021 Week In Review

Problem 9. Evaluate $\int_{1}^{4} \int_{1}^{\sqrt{x}} (x+y) \, dy dx$

Problem 10. Evaluate $\int_0^1 \int_0^y (3+x^2y) dxdy$

Problem 11. Sketch the region of integration and evaluate $\iint_D xe^y dA$ where D is the region bounded by $y=0, y=x^2$ and x=2

Problem 12. Set up but do not evaluate both a type I and type II integral for $\iint_D f(x,y) dA$, where D is the region bounded by $y = x^2$ and y = 3x.

Problem 13. Sketch the region of integration and change the order of integration.

(i)
$$\int_0^4 \int_{\sqrt{y}}^2 f(x,y) \, dx dy$$

(ii)
$$\int_{1}^{2} \int_{0}^{\ln x} f(x, y) \, dy dx$$

Problem 14. Set up but do not evaluate a double itegral that gives the volume of the solid under the surface z = xy and above the triangle with vertices (1, 1), (1, 2) and (2, 1)

Problem 15. Evaluate $\int_0^2 \int_{\tau}^2 e^{-y^2} dy dx$

Problem 16. Evaluate $\int_0^2 \int_{y^2}^4 \sqrt{x} \sin x \, dy dx$

Section 15.3

Recall: If P(x, y) is a point in the xy-plane, we can represent the point P in polar form: Let r be the distance from O to P and let θ be the angle between the polar axis and the line OP. Then the point P is represented by the ordered pair (r, θ) , and r, θ are called the **polar coordinates** of P.

Connecting polar coordinates with rectangular coordinates:

- a.) $x = r\cos(\theta), y = r\sin(\theta)$
- b.) $\tan(\theta) = \frac{y}{x}$, thus $\theta = \arctan(\frac{y}{x})$.
- c.) $x^2 + y^2 = r^2$

Problem 1. Find the cartesian coordinates of the polar point $\left(2, \frac{2\pi}{3}\right)$.

Problem 2. Find the polar coordinates of the rectangular point $(\sqrt{3}, -1)$.

Problem 3. Find a cartesian equation for the curve described by $r = 2\sin\theta$.

Problem 4. Find a polar equation for y = 1 + 3x

Change to Polar Coordinates in a Double Integral: If f is continuous on a polar rectangle R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint_{R} f(x,y) dA = \int_{a}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta$$

Problem 5. Evaluate $\iint_R (x+2) dA$, where R is the region bounded by the circle $x^2 + y^2 = 4$.

Problem 6. Evaluate $\iint_R 4y \, dA$, where R is the region in the second quadrant bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Problem 7. Evaluate $\iint_R 3x^2 dA$, where R is the region in the first quadrant enclosed by the by the circle $x^2 + y^2 = 9$ and the lines y = 0 and y = x.

Math 251 – Spring 2021 Week In Review

Problem 8. Change $\int_0^3 \int_0^{\sqrt{9-x^2}} x^2 \, dy dx$ to a polar double integral. Do not evaluate.

Problem 9. Change $\int_0^4 \int_0^{\sqrt{4x-x^2}} \sqrt{x^2+y^2} \, dy dx$ to a polar double integral. Do not evaluate.

Problem 10. Set up but do not evaluate a double integral that gives the volume of the solid that lies above the xy-plane, below the sphere $x^2 + y^2 + z^2 = 81$ and inside the cylinder $x^2 + y^2 = 4$

Problem 11. Find the volume of the solid bounded by the paraboloids $z = 20 - x^2 - y^2$ and $z = 4x^2 + 4y^2$.