Wir 4: Sections 14.1, 14.3, 14.4

Section 14.1

Problem 1. Find and sketch the domain of the following functions.
a.) $f(x, y)=\sqrt{4 x-2 y}$
b.) $f(x, y)=\ln (y-3 x)$
c.) $f(x, y)=\sqrt[4]{x y}$
d.) $f(x, y)=\frac{\sqrt{8-x^{2}-y^{2}}}{x+2 y}$
e.) $f(x, y)=\frac{1}{\sqrt{x+2 y}}+\sqrt{4-x^{2}-y^{2}}$

Problem 2. Sketch the graph of the following surfaces:
a.) $2 z=x+3 y-6$
b.) $z=x^{2}+6 y^{2}$
c.) $z=y^{2}$
d.) $z=7-x^{2}-2 y^{2}$

Problem 3. Sketch several level curves for the following surfaces:
a.) $f(x, y)=2+4 x-y$
b.) $f(x, y)=x+y^{2}$
c.) $f(x, y)=\sqrt{9-x^{2}-y^{2}}$
d.) $f(x, y)=8 \sqrt{x^{2}-y^{2}}$

Problem 4. Describe the level surfaces of $f(x, y, z)=x+y+z$.
Problem 5. Describe the level surfaces of $f(x, y, z)=x^{2}+y^{2}+z^{2}$.

Section 14.3

Problem 6. Find $f_{x}(-1,2)$ and $f_{y}(-1,2)$ for $f(x, y)=x^{3}-y^{4}-6 x^{2} y^{3}$
Problem 7. Find $f_{x}(x, y)$ and $f_{y}(x, y)$ for $f(x, y)=x^{2} e^{\cos \left(2 x^{4} y^{2}\right)}$
Problem 8. If $f(x, y)=y e^{-x}+2 x$, find $\left.\frac{\partial f}{\partial x}\right|_{(1,0)}$ and $\left.\frac{\partial f}{\partial y}\right|_{(1,0)}$
Problem 9. Find all higher order partial derivatives for $f(x, y)=\ln (2 x+3 y)$

Section 14.4

Problem 10. Find the differential of $z=x^{2}+2 y^{2}+4 x y$ at the point $(1,2)$.

Problem 11. Find the differential of $f(x, y, z)=x^{2} y^{3} z^{4}$.

Problem 12. Find an equation of the tangent plane to the surface $z=x^{3}-3 y^{2}$ at point $(-1,1)$.

Problem 13. Find an equation of the tangent plane to the surface $z=e^{x-y}$ at point $(2,2,1)$. What is the equation of the normal line to this tangent plane at point $(2,2,1)$?

Problem 14. Using the tangent plane to the graph of $f(x, y)=\sqrt{24-x^{2}-y^{2}}$ at point $(2,2)$, approximate $f(2.09,1.93)$.

Problem 15. Use differentials to approximate $\left((1.97)^{3}-2(0.9)^{4}+4(1.01)^{5}\right)^{3}$.

Problem 16. The length and width of a rectangle are measured as 30 cm and 24 cm , respectively, with an error in measurement of 0.1 cm in both. Use differentials to approximate the maximum error in the calculated area of the rectangle.

