

Math 251 – Fall 2021 Week In Review

Wir 9: Exam 3 Review

Sections 15.1-15.4, 15.6-15.9

Problem 1. Let R be the region in the xy-plane bounded by y = 2x, x = 10, and y = -1. Set up but do not evaluate $\int \int_{R} (x^2 + y^2) dA$ in the order dy dx and dx dy.

Problem 2. Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} e^{-x^{2}-y^{2}} dy dx$

Problem 3. Let *D* be the region bounded by y = 0, $y = x^2$, and x = 3. Find $\int \int_D 3x \cos y \, dA$.

Problem 4. Compute $\int_{0}^{3} \int_{3y}^{9} 7e^{x^{2}} dx dy$.

Problem 5. Let R be the region that lies to the left of the y-axis between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 16$. Find $\int \int_R 5(x+y)$.

Problem 6. Find the volume of the sold that is above the xy plane, below the ellipsoid $4x^2 + 4y^2 + z^2 = 64$ but inside the cylinder $x^2 + y^2 = 9$.

Problem 7. Let *D* be the triangular region with vertices (0, 1), (1, 2), and (4, 1). Set up but do not evaluate $\int \int_D 7y^2 dA$ in the order dy dx and dx dy.

Problem 8. Let $D = \{(x, y) : 0 \le x \le 1, 0 \le y \le x^2\}$. Evaluate $\int \int_D \frac{5y}{6x^5 + 1} dA.$

Problem 9. Express $\int \int \int_E f(x, y, z) dV$ in the order dydzdx if E is the solid bounded by $y = x^2, z = 0, y + 4z = 16$.

Problem 10. Find the volume of the solid that is enclosed by the cylinder $x^2 + y^2 = 9$ and the planes y + z = 12 and z = 2.

Problem 11. Find the volume of the solid enclosed by the paraboloids $y = x^2 + z^2$ and $y = 32 - x^2 - z^2$.

With thanks to Amy Austin for generously sharing all of her WIR problems from last semester.

TEXAS A&M UNIVERSITY Math Learning Center

Problem 12. Convert to Cylindrical: $\int_{-9}^{9} \int_{-\sqrt{81-y^2}}^{\sqrt{81-y^2}} \int_{\sqrt{x^2+y^2}}^{13} xz \, dz \, dx \, dy.$

Problem 13. Find $\int \int \int_E (x^2 + y^2 + z^2) dV$ where *E* is the part of the ball centered at the origin with radius 2 in the first octant.

Problem 14. Evaluate in spherical coordinates. $\int_0^{10} \int_0^{\sqrt{100-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{200-x^2-y^2}} yz \, dz \, dy \, dx$

Problem 15. Let *E* be the region that lies between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 9$. Set up but do not evaluate $\int \int \int_E (x + y + z) \, dV$ in spherical coordinates.

Problem 16. Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the xy plane and below the cone $z = \sqrt{x^2 + y^2}$.

Problem 17. Let R be the triangular region with vertices (0,0), (9,1), (1,9). Using the transformation x = 9u + v and y = u + 9v find $\int \int_{R} (x - 10y) dA$.

Problem 18. Let *R* be the parallelogram enclosed by the lines x - 6y = 0, x - 6y = 9, 6x - y = 7, 6x - y = 10. Using the transformation u = x - 6y and v = 6x - y, find $\int \int_{R} 9 \frac{x - 6y}{6x - y} dA$

Problem 19. Let R be the region bounded by $25x^2 + 4y^2 = 100$. Using the transformation x = 2u and y = 5v, find $\int \int_{R} 4x^2 dA$.