16.1 - VECTOR FIELDS

Exercise 1

Sketch the following vector fields.
(a) $\mathbf{F}=0.3 \mathbf{i}-0.4 \mathbf{j}$
(b) $\mathbf{F}=x \mathbf{j}$
(c) $\mathbf{F}=\nabla f$, where $f(x, y)=x y$.

16.2 - LINE INTEGRALS

Exercise 2

Compute the following line integrals.
(a) $\int_{C} x y^{4} \mathrm{~d} s$, where C is the right half of the circle $x^{2}+y^{2}=16$.
(b) $\int_{C} x^{2} \mathrm{~d} x+y^{2} \mathrm{~d} y$, where C is the arc of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$ followed by the line segment from $(0,2)$ to $(4,3)$.
(c) $\int_{C} y^{2} z \mathrm{~d} s$, where C is the line segment from $(3,1,2)$ to $(1,2,5)$.
(d) $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}=\langle y, z, x\rangle$ and C is the curve given by $x=\sqrt{t}, y=t, z=t^{2}, 1 \leq t \leq 4$.

16.3 - FUNDAMENTAL THEOREM FOR LINE INTEGRALS

Exercise 3

Check if the following vector fields are conservative or not. If they are conservative, find a potential function for the vector field.
(a) $\mathbf{F}(x, y)=\left(y^{2}-2 x\right) \mathbf{i}+2 x y \mathbf{j}$
(b) $\mathbf{F}(x, y)=\left\langle y e^{x}+\sin (y), e^{x}+x \cos (y)\right\rangle$
(c) $\mathbf{F}(x, y)=\left\langle 2 x y+y^{-2}, x^{2}-2 x y^{-3}\right\rangle$ in the region where $y>0$.
(d) $\mathbf{F}(x, y)=(\ln (y)+y / x) \mathbf{i}+(\ln (x)+x / y) \mathbf{j}$

Exercise 4

The following are all conservative vector fields. For each, find a potential function f and use it to evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$.
(a) $\mathbf{F}(x, y)=\left\langle 3+2 x y^{2}, 2 x^{2} y\right\rangle$. C is the arc of the hyperbola $y=1 / x$ from $(1,1)$ to $\left(4, \frac{1}{4}\right)$.
(b) $\mathbf{F}(x, y)=(1+x y) e^{x y} \mathbf{i}+x^{2} e^{x y} \mathbf{j}$. C is given by $\mathbf{r}(t)=\langle\cos (t), 2 \sin (t)\rangle, 0 \leq t \leq \pi / 2$.
(c) $\mathbf{F}(x, y, z)=\left\langle y z e^{x z}, e^{x z}, x y e^{x z}\right\rangle$. C is given by $\mathbf{r}(t)=\left\langle t^{2}+1, t+1, t^{2}\right\rangle, 0 \leq t \leq 1$.
(d) $\mathbf{F}(x, y, z)=\langle\sin (y), x \cos (y)+\cos (z),-y \sin (z)\rangle$. C is given by $\mathbf{r}(t)=\langle\sin (t), t, 2 t\rangle, 0 \leq t \leq \pi / 2$.

16.4 - GREEN'S THEOREM

Exercise 5

Use Green's Theorem to evaluate the following line integrals along the given positively oriented curve.
(a) $\int_{C} y e^{x} \mathrm{~d} x+2 e^{x} \mathrm{~d} y$, where C is the rectangle with vertices $(0,0),(3,0),(3,4)$, and $(0,4)$.
(b) $\int_{C}\left(y+e^{\sqrt{x}}\right) \mathrm{d} x+\left(2 x+\cos \left(y^{2}\right)\right) \mathrm{d} y$, where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.

Exercise 6

Use Green's Theorem to evaluate the following. Be sure to check the orientation of the curve.
(a) $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}(x, y)=\langle y \cos (x)-x y \sin (x), x y+x \cos (x)\rangle$ and C is the triangle from $(0,0)$ to $(0,4)$ to $(2,0)$ to $(0,0)$.
(b) $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}(x, y)=\left\langle e^{-x}+y^{2}, e^{-y}+x^{2}\right\rangle$ and C is the arc of the curve $y=\cos (x)$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$ followed by the line segment from $(\pi / 2,0)$ to $(-\pi / 2,0)$.

