FINAL EXAM REVIEW

Exercise 1

Sketch the vector field $\mathbf{F}=\langle x, y\rangle$.

Exercise 2

Compute $\int_{C} e^{x} \mathrm{~d} x$, where C is the arc of the curve $x=y^{3}$ from $(-1,-1)$ to $(1,1)$.

Exercise 3

Compute the line integral $\int_{C} x y^{4} \mathrm{~d} s$, where C is the right half of the circle $x^{2}+y^{2}=16$.

Exercise 4

Compute the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}=\left\langle x+y^{2}, x z, y+z\right\rangle$ and C is given by $\mathbf{r}(t)=\left\langle t^{2}, t^{3},-2 t\right\rangle$, $0 \leq t \leq 2$.

Exercise 5

Determine whether or not $\mathbf{F}(x, y)=\left\langle x y+y^{2}, x^{2}+2 x y\right\rangle$ is a conservative vector field. If it is, find a function f such that $\mathbf{F}=\nabla f$.

Exercise 6

Determine whether or not $\mathbf{F}(x, y)=\left\langle y e^{x}+\sin (y), e^{x}+x \cos (y)\right\rangle$ is a conservative vector field. If it is, find a function f such that $\mathbf{F}=\nabla f$.

Exercise 7

Determine whether or not $\mathbf{F}(x, y, z)=\left\langle y z e^{x z}, e^{x z}, x y e^{x z}\right\rangle$ is a conservative vector field. If it is, find a potential function for the vector field \mathbf{F}. Evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where C is a curve from $(0,0,0)$ to $(1,4,2)$.

Exercise 8

Using Green's theorem, evaluate $\int_{C} y^{3} \mathrm{~d} x-x^{3} \mathrm{~d} y$, where C is the circle $x^{2}+y^{2}=4$, oriented clockwise.

Exercise 9

Using Green's theorem, find the work done by the force field $\mathbf{F}=\left\langle x(x+y), x y^{2}\right\rangle$ on a particle that moves from the origin along the x-axis to $(1,0)$, then along the line segment to $(0,1)$ and then back to the origin along the y-axis.

Exercise 10

Compute the curl and divergence of the vector field $\mathbf{F}=\sin (y z) \mathbf{i}+\sin (z x) \mathbf{j}+\sin (x y) \mathbf{k}$.

Exercise 11

Find a parametric representation of the following surfaces.
(a) The plane through the point $(1,2,1)$ that contains the vectors $\mathbf{i}-\mathbf{j}$ and $\mathbf{j}-\mathbf{k}$.
(b) The part of the cylinder $x^{2}+z^{2}=9$ that lies above the $x y$-plane and between the planes $y=-4$ and $y=4$.
(c) The part of the sphere $x^{2}+y^{2}+z^{2}=36$ that lies between the planes $z=0$ and $z=3 \sqrt{3}$.

Exercise 12

Find the surface area of the following surfaces.
(a) The part of the plane $3 x+2 y+z=6$ that lies in the first octant.
(b) The part of the surface $x=z^{2}+y$ that lies between the planes $y=0, y=2, z=0$, and $z=2$.

Exercise 13

Compute $\iint_{S} y^{2} z^{2} \mathrm{~d} S$, where S is the part of the cone $y=\sqrt{x^{2}+z^{2}}$ between the planes $y=0$ and $y=5$.

Exercise 14

Using Stokes' theorem, compute $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}=\langle x y, y z, z x\rangle$ and C is the boundary of the part of the paraboloid $z=1-x^{2}-y^{2}$ in the first octant. (C is oriented counterclockwise as viewed from above.)

Exercise 15

Using Stokes' theorem, compute $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}$, where $\mathbf{F}=z e^{y} \mathbf{i}+x \cos (y) \mathbf{j}+x z \sin (y) \mathbf{k}$ and S is the hemisphere $x^{2}+y^{2}+z^{2}=16, y \geq 0$, oriented in the direction of the positive y-axis.

Exercise 16

Using the divergence theorem, compute the flux of $\mathbf{F}=\left\langle x^{3}+y^{3}, y^{3}+z^{3}, z^{3}+x^{3}\right\rangle$ across the surface S, where S is the sphere centered at the origin with radius 2 .

