FINAL EXAM REVIEW

Exercise 1
Sketch the vector field $\mathbf{F}=\langle x, y\rangle$.

Exercise 2
Compute $\int_{C} e^{x} \mathrm{~d} x$, where C is the arc of the curve $x=y^{3}$ from $(-1,-1)$ to $(1,1)$.

$$
\begin{aligned}
& \int_{c} e^{x} d x=\iint_{-1}^{1} e^{t^{3}} x^{\prime}(t) d t \\
& \begin{array}{l}
y=t \\
x=t^{3} \quad(-1 \leq t \leq 1)
\end{array} \\
& =\int_{-1}^{1} e^{t^{3}}\left(3 t^{2}\right) d t \quad \begin{array}{l}
u=t^{3} \\
d u=3 t^{2} d t
\end{array} \\
& =\int_{-1}^{1} e^{u} d u \\
& =e-e^{-1}
\end{aligned}
$$

Exercise 3
Compute the line integral $\int_{C} x y^{4} \mathrm{~d} s$, where C is the right half of the circle $x^{2}+y^{2}=16$.

$$
\begin{aligned}
\int_{c} x y^{4} d s & =\int_{c} x y^{4} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad \begin{array}{l}
x=4 \cos \theta \\
y=4 \sin \theta \\
\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}
\end{array} \\
& =\int_{-\pi / 2}^{\pi / 2} 4^{5} \cos \theta \sin \theta \sqrt{16 \sin ^{2} \theta+16 \cos ^{2} \theta} d \theta \\
& =4^{6} \int_{-\pi / 2}^{\pi / 2} \cos \theta \sin ^{4} \theta d \theta \quad \begin{array}{l}
u=\sin \theta \\
d u
\end{array} \\
& =4^{6} \int_{-1}^{1} u^{4} d u=\left.\frac{4^{6}}{5} u^{5}\right|_{u=-1} ^{4}=\frac{4^{6}}{5}(1-1)=\frac{4^{6}}{5}
\end{aligned}
$$

Exercise 4
Compute the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}=\left\langle x+y^{2}, x z, y+z\right\rangle$ and C is given by $\mathbf{r}(t)=\left\langle t^{2}, t^{3},-2 t\right\rangle$, $0 \leq t \leq 2$.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{0}^{2} \vec{F}(\vec{r}(t)) \cdot r(t) d t \\
& =\int_{0}^{2}\left\langle t^{2}+t^{6},-2 t^{3} t^{3}-2 t>\cdot<2 t, 3 t^{2},-2>d t\right. \\
& =\int_{0}^{2}\left(2 t^{3}+2 t^{7}-6 t^{5}-2 t^{3}+4 t\right) d t \\
& =\frac{2}{8} t^{8}-\frac{6}{6} t^{6}+\left.\frac{4}{2} t^{2}\right|_{0} ^{2} \\
& =\frac{1}{4}(2)^{8}-(2)^{6}+2(2)^{2}=8
\end{aligned}
$$

Exercise 5
Determine whether or not $\mathbf{F}(x, y)=\left\langle x y+y^{2}, x^{2}+2 x y\right\rangle$ is a conservative vector field. If it is, find a function f such that $\mathbf{F}=\nabla f$.

$$
\begin{aligned}
& \frac{\partial Q}{\partial x}=2 x+2 y \\
& \frac{\partial P}{\partial y}=x+2 y \quad \text { not equal }
\end{aligned}
$$

Therefore, \vec{F} is not conservative.

Exercise 6
Determine whether or not $\mathbf{F}(x, y)=\left\langle y e^{x}+\sin (y), e^{x}+x \cos (y)\right\rangle$ is a conservative vector field. If it is, find a function f such that $\mathbf{F}=\nabla f . \underbrace{}_{P}$

$$
\begin{aligned}
& \frac{\partial Q}{\partial x}=e^{x}+\cos (y)=\frac{\partial P}{\partial y} \Rightarrow \vec{F} \text { is conservative. } \\
& \begin{aligned}
f(x, y) & =\int f_{x} d x \\
& =\int\left(y e^{x}+\sin (y)\right) d x \quad
\end{aligned} \\
& \Rightarrow f_{y}=e^{x}+x \cos (y)+c^{\prime}(y)=e^{x}+x \cos (y) \\
& \Rightarrow c^{\prime}(y)=0 \\
& \Rightarrow c(y)=c \\
& S_{0}, f(x, y)=y e^{x}+x \sin (y)+c
\end{aligned}
$$

Exercise 7
Determine whether or not $\mathbf{F}(x, y, z)=\left\langle y z e^{x z}, e^{x z}, x y e^{x z}\right\rangle$ is a conservative vector field. If it is, find a potential function for the vector field \mathbf{F}. Evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where C is a curve from $(0,0,0)$ to

$$
\operatorname{curl}(\vec{F})=\left|\begin{array}{ccc}
\vec{\iota} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y z e^{x z} & e^{x z} & x y e^{x z}
\end{array}\right|
$$

$$
=\left\langle x e^{x z}-x e^{x z},-\left(x y z e^{x z}+y e^{x z}-x y z e^{x z}-y e^{x z}\right), z e^{x z}-z e^{x z}\right\rangle
$$

$=\vec{O} \Rightarrow \vec{F}$ is conservative.

$$
\begin{aligned}
& f(x, y, z)=\int f_{x} d x \\
& =\int y z e^{x z} d x \\
& \Rightarrow C_{y}(y, z)=0 \\
& \Rightarrow c(y, z)=c(z) \\
& =y e^{x z}+c(y, z) \\
& \rightarrow f_{z}=x y e^{x z}+c^{\prime}(z)=x y e^{x z} \\
& \Rightarrow c^{\prime}(z)=0 \\
& \Rightarrow c(z)=c \\
& \int_{C} \vec{F} \cdot d \vec{r}=f(1,4,2)-f(0,0,0) \\
& =4 e^{2}-0
\end{aligned}
$$

So, $f(x, y, z)=y e^{x z}+c$

Exercise 8
Using Green's theorem, evaluate $\int_{C} y^{3} \mathrm{~d} x-x^{3} \mathrm{~d} y$, where C is the circle $x^{2}+y^{2}=4$, oriented clock-

$$
\begin{aligned}
& \int_{c} y^{3} d x-x^{3} d y \\
&=-\int_{-c} y^{3} d x-x^{3} d y \quad(-c \text { is posting oricuted) } \\
&=-\iint\left(\frac{\partial \theta}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
&=-\iint_{D}\left(-3 x^{2}-3 y^{2}\right) d A \\
&=-\int_{0}^{2 \pi} \int_{0}^{2}-3 r^{2} r d r d \theta \\
&=\left.3 \int_{0}^{2 \pi} \frac{1}{4} r^{4}\right|_{r=0} ^{r=2} d \theta \\
&=12 \int_{0}^{2 \pi} d \theta \\
&=24 \pi
\end{aligned}
$$

Exercise 9
Using Green's theorem, find the work done by the force field $\left.\mathbf{F}=\widetilde{\langle x(x+y)}, x y^{2}\right\rangle$ on a particle that moves from the origin along the x-axis to $(1,0)$, then along the line segment to $(0,1)$ and then back to the origin along the y-axis.

$$
\begin{aligned}
& \text { work }=\int_{c} \vec{F} \cdot d \vec{r} \\
& =\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
& =\int_{0}^{1} \int_{0}^{1-y}\left(y^{2}-x\right) d x d y \\
& =\left.\int_{0}^{1}\left(x y^{2}-\frac{1}{2} x^{2}\right)\right|_{x=0} ^{x=1-y} d y \\
& =\int_{0}^{1}\left((1-y) y^{2}-\frac{1}{2}(1-y)^{2}\right) d y \\
& =\int_{0}^{1}\left(y^{2}-y^{3}-\frac{1}{2}\left(1-2 y+y^{2}\right)\right) d y \\
& =\int_{0}^{1}\left(y^{2}-y^{3}-\frac{1}{2}+y-\frac{1}{2} y^{2}\right) d y \\
& =\int_{0}^{1}\left(-y^{3}+\frac{1}{2} y^{2}+y-\frac{1}{2}\right) d \underset{\text { Page } 6 \text { of } 14}{ }=-\frac{1}{4}+\frac{1}{6}+\frac{1}{2}-\frac{1}{2}=\frac{-1}{12}
\end{aligned}
$$

Exercise 10
Compute the curl and divergence of the vector field $\mathbf{F}=\sin (y z) \mathbf{i}+\underset{\sin }{ }(z x) \mathbf{j}+\sin (x y) \mathbf{k}$.

$$
\begin{aligned}
& \operatorname{curl}(\vec{F})=\nabla \times \vec{F}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\sin (y z) & \sin (z x) & \sin (x y)
\end{array}\right| \\
& =\langle x \cos (x y)-x \cos (z x), y \cos (y z)-y \sin (x y), z \cos (z x)-z \cos (y z)\rangle \\
& d \operatorname{liv}(\vec{F})=\frac{\partial}{\partial x} \sin (y z)+\frac{\partial}{\partial y} \sin (z x)+\frac{\partial}{\partial z} \sin (x y)=0 .
\end{aligned}
$$

Exercise 11
Find a parametric representation of the following surfaces.
(a) The plane through the point $(1,2,1)$ that contains the vectors $\mathbf{i}-\mathbf{j}$ and $\mathbf{j}-\mathbf{k}$.

$$
\begin{aligned}
\vec{r}(u, v) & =(1,2,1)+u(1,-1,0)+v(0,1,-1) \\
& =\langle 1+u, 2-u+v, 1-v\rangle \quad\binom{-\infty<u<\infty}{-\infty<v<\infty}
\end{aligned}
$$

(b) The part of the cylinder $x^{2}+z^{2}=9$ that lies above the $x y$-plane and between the planes $y=-4$ and $y=4$.

$$
\begin{aligned}
& x=3 \cos \theta \\
& z=3 \sin \theta \\
& y=y
\end{aligned}
$$

$$
\begin{aligned}
\vec{r}(y, \theta)= & <3 \cos \theta, y, 3 \sin \theta \\
& \binom{-4 \leq y \leq 4}{0 \leq \theta \leq 2 \pi}
\end{aligned}
$$

(c) The part of the sphere $x^{2}+y^{2}+z^{2}=36$ that lies between the planes $z=0$ and $z=3 \sqrt{3}$.

$$
\begin{array}{ll}
x=6 \sin \phi \cos \theta \\
y=6 \sin \phi \sin \theta
\end{array} \quad\binom{\frac{\pi}{6} \leq \phi \leq \pi / 2}{0 \leq \theta \leq 2 \pi}
$$

$$
\alpha=\sin ^{-1}\left(\frac{3 \sqrt{3}}{6}\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)
$$

$$
=\pi / 3
$$

Exercise 12
Find the surface area of the following surfaces.
(a) The part of the plane $3 x+2 y+z=6$ that lies in the first octant.

Intersection with xy-plane:

$$
\begin{aligned}
& 3 x+2 y=6 \\
& \Rightarrow y=3-\frac{3}{2} x
\end{aligned}
$$

$$
\begin{aligned}
\text { surface area } & =\int_{S} d S \\
& =\int_{D} \int_{0}^{2} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A \\
& =\int_{0}^{3-\frac{3}{2} x} \int_{0}^{3^{2}+2^{2}+1} d y d x \\
& =\sqrt{14} \int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} \\
& =\sqrt{14} \int_{0}^{2}\left(3-\frac{3}{2} \times\right) d x \\
& =\left.\sqrt{14}\left(3 \times-\frac{3}{4} x^{2}\right)\right|_{0} ^{2} \\
& =\sqrt{14}(6-3)=\sqrt{14}
\end{aligned}
$$

(b) The part of the surface $x=z^{2}+y$ that lies between the planes $y=0, y=2, z=0$, and $z=2$.

Parameterize the surface:

$$
\begin{aligned}
& \vec{r}(y, z)=\left\langle z^{2}+y, y, z\right\rangle \quad\binom{0 \leq y \leq 2}{0 \leq z \leq 2} \\
& \overrightarrow{r_{y}}=\langle 1,1,0\rangle \\
& \overrightarrow{r_{z}}=\langle 2 z, 0,1\rangle \\
& \vec{r}_{y} \times \vec{r}_{z}=\langle 1,-1,-2 z\rangle \\
& \text { Surface area }=\iint_{S} d S \\
& =\int_{D}\left|\vec{r}_{y} \times \vec{r}_{z}\right| d A \\
& =\int_{0}^{2} \int_{0}^{2} \sqrt{1^{2}+(-1)^{2}+(-2 z)^{2}} d y d z \\
& =2 \int_{0}^{2} \sqrt{2+4 z^{2}} d z
\end{aligned}
$$

Exercise 13
Compute $\iint_{S} y^{2} z^{2} \mathrm{~d} S$, where S is the part of the cone $y=\sqrt{x^{2}+z^{2}}$ between the planes $y=0$ and $y=5$.

Parameterize S:

$$
x=r \cos \theta
$$

$$
\begin{aligned}
& x=r \cos \theta \\
& z=r \sin \theta \\
& y=r
\end{aligned} \quad\binom{0 \leq r \leq S}{0 \leq \theta \leq 2 \pi}
$$

$$
\begin{aligned}
& \vec{r}(r, \theta)=\langle r \cos \theta, r, r \sin \theta\rangle \\
& \vec{r}_{r}=\langle\cos \theta, 1, \sin \theta\rangle \\
& \vec{r}_{\theta}=\langle-r \sin \theta, 0, r \cos \theta\rangle \\
& \vec{r}_{r} \times \vec{r}_{\theta}=\langle r \cos \theta,-r, r \sin \theta\rangle
\end{aligned}
$$

$$
\begin{aligned}
\iint_{S} y^{2} z^{2} d S & =\iint_{0} r^{2} r^{2} \sin ^{2} \theta\left|\vec{r}_{r} \times \vec{r}_{\theta}\right| d A \\
& =\int_{0}^{2 \pi} \int_{0}^{5} r^{4} \sin ^{2} \theta \sqrt{r^{2} \cos ^{2} \theta+r^{2}+r^{2} \sin ^{2} \theta} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{S} r^{4} \sin ^{2} \theta \sqrt{2} r d r d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \sin ^{2} \theta d \theta \int_{0}^{5} r^{5} d r \\
& =\left.\frac{\sqrt{2}}{2} \int_{0}^{2 \pi}(1-\cos (2 \theta)) d \theta \frac{1}{6} r^{6}\right|_{0} ^{5} \\
& =\left.\frac{\sqrt{2} 5^{6}}{12}\left(\theta-\frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{2 \pi}=\frac{\sqrt{2} 5^{6}}{6} \pi
\end{aligned}
$$

Exercise 14
Using Stokes' theorem, compute $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}=\langle x y, y z, z x\rangle$ and C is the boundary of the part of the parabola $z=1-x^{2}-y^{2}$ in the first octant. (C is oriented counterclockwise as viewed from above.)
$\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl}(\vec{F}) \cdot d \vec{S}$, where S is the part of the paraboloid $z=1-x^{2}-y^{2}$ in the first octant, oriented upward.

$$
\begin{aligned}
& \vec{r}(r, \theta)=\left\langle r \cos \theta, r \sin \theta, 1-r^{2}\right\rangle \quad\binom{0 \leq r \leq 1}{0 \leq \theta \leq \pi / 2} \\
& \overrightarrow{r_{r}}=\langle\cos \theta, \sin \theta,-2 r\rangle \\
& \vec{r}_{\theta}=\langle-r \sin \theta, r \cos \theta, 0\rangle
\end{aligned}
$$

$\vec{r}_{r} \times \vec{r}_{\theta}$ gives the upwand orientation, which is what we want.

$$
\begin{aligned}
& \vec{r}_{r} \times \vec{r}_{\theta}=\left\langle 2 r^{2} \cos \theta, 2 r^{2} \sin \theta, r\right\rangle \\
& \operatorname{curl}(\vec{F})=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & y z & z x
\end{array}\right|=\langle-y,-z,-x\rangle \\
& \rightarrow=\int_{0}^{\pi / 2} \int_{0}^{1}\left\langle-r \sin \theta, r^{2}-1,-r \cos \theta\right\rangle \cdot\left\langle 2 r^{2} \cos \theta, 2 r^{2} \sin \theta, r\right\rangle d r d \theta
\end{aligned}
$$

$$
=\cdots=\frac{-17}{20}
$$

Exercise 15
Using Stokes'theorem, compute $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}$, where $\mathbf{F}=z e^{y} \mathbf{i}+x \cos (y) \mathbf{j}+x z \sin (y) \mathbf{k}$ and S is the hemisphere $x^{2}+y^{2}+z^{2}=16, y \geq 0$, oriented in the direction of the positive y-axis.

$$
\begin{aligned}
& \iint_{S} \operatorname{curl}(\vec{F}) \cdot d \vec{S} \\
& =\int_{C} \vec{F} \cdot d \vec{r} \quad \vec{r}(t)=\langle 4 \cos (-t), 0,4 \sin (t)\rangle \\
& =\int_{0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}\langle 4 \sin (-t), 4 \cos (-t), 0\rangle \cdot\langle+4 \sin (-t), 0,-4 \cos (-t)\rangle d t \\
& =\int_{0}^{2 \pi} \mid 6 \sin ^{2}(-t) d t \\
& =8 \int_{0}^{2 \pi}(1-\cos (-2 t)) d t \\
& =\left.8\left(t+\frac{1}{2} \sin (-2 t)\right)\right|_{0} ^{2 \pi} \\
& =16 \pi
\end{aligned}
$$

Exercise 16
Using the divergence theorem, compute the flux of $\mathbf{F}=\left\langle x^{3}+y^{3}, y^{3}+z^{3}, z^{3}+x^{3}\right\rangle$ across the surface S, where S is the sphere centered at the origin with radius 2 .

$$
\begin{aligned}
f l_{u x} & =\iint_{S} \vec{F} \cdot d \vec{S} \\
& =\iiint_{V} d i v(\vec{F}) d V \\
& =\iiint_{V}\left(3 x^{2}+3 y^{2}+3 z^{2}\right) d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2} 3 \rho^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =3 \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{2} \rho^{4} d \rho \\
& =3(2 \pi)\left(-\left.\cos \phi\right|_{0} ^{\pi}\right) \frac{1}{5} 2^{5} \\
& =6 \pi(-(-1)+1) \frac{1}{s} 2^{5} \\
& =\frac{384 \pi}{5}
\end{aligned}
$$

