12.1 - BD SPACE

Review

(a) The $x y z$ axes should satisfy the right hand rule.
(b) In \mathbb{R}^{3}, the $x z$-coordinate plane is the plane containing the x and z axes. How can this plane be written in terms of an equation?

$$
y=0
$$

(c) To find a sphere, you need its center and radius. If $\left(c_{1}, c_{2}, c_{3}\right)$ is the center and the radius is r, what is the standard formula for the equation of a sphere?

$$
\left(x-c_{1}\right)^{2}+\left(y-c_{2}\right)^{2}+\left(z-c_{3}\right)^{2}=r^{2}
$$

(d) What is the distance between the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$?

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

Exercise 1

Find an equation for the sphere with center at $(2,1,-3)$ that just touches the plane $y=5$.

$$
\begin{aligned}
& \text { Centered on } y=1 \text { and just touches } y=5 \Rightarrow r=4 \text {. } \\
& (x-2)^{2}+(y-1)^{2}+(z+3)^{2}=4^{2} \text {. }
\end{aligned}
$$

Exercise 2
Let S be the sphere given by the equation $x^{2}-2 x+y^{2}+8 y+z^{2}+6 z=10$. Find an equation for the sphere centered at $(3,2,6)$ that just barely touches S.

$$
x^{2}-2 x+1+y^{2}+8 y+16+z^{2}+6 z+9=10+1+16+9
$$

$$
(x-1)^{2}+(y+4)^{2}+(z+3)^{2}=36=6 . \quad \begin{aligned}
& \text { Shat center }(1,-4,-3) \\
& \text { and radius } 6 .
\end{aligned}
$$ and radius 6.

distance between the centers of the spheres is

$$
\sqrt{(3-1)^{2}+(2--4)^{2}+(6--3)^{2}}=11
$$

So, the other sphere must have radius 5 .

$$
(x-3)^{2}+(y-2)^{2}+(z-6)^{2}=5^{2}
$$

Exercise 3
(a) Plot $(y-1)^{2}+x^{2}=1$ in \mathbb{R}^{2}.

(b) Plot $(z-1)^{2}+x^{2}=1$ in \mathbb{R}^{3}.

Page 2 of 6

Exercise 4
In words, state what the following regions represent in \mathbb{R}^{3}.
(a) $x^{2}+y^{2}+z^{2} \leq 1$ and $z>0$.
upper half of the unit ball centered at the origin
(b) $(x-4)^{2}+(z+2)^{2}=7$.
cylinder with radius $\sqrt{7}$ that is infinitely long in the y-direction. The circular slices are central at $(4, y,-z)$.
(c) $(x-4)^{2}+(z+2)^{2}=7$ and $y=4$.
circle in the plane $y=4$ with radius $\sqrt{7}$ and centered at $(4,4,-2)$.

Exercise 5
Let R be the region in \mathbb{R}^{3} defined by $1 \leq(x-1)^{2}+(y+2)^{2}+z^{2} \leq 9$. Let P be a plane. What are the possible shapes of $R \cap P(R$ intersected with $P)$?

1. ϕ (ie., they might not intersect)
2. a single point (if the plane is tangent to the outer surface of \mathbb{R})
3. a filled in circle (if the plane cuts through the outer surface, but not through the inner surface)
4. a filled ring (if the plane cuts through the outer and the inner surfaces.

12.2 - VECTORS

Review

(a) A vector has a direction and a magnitude.
(b) If $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, then the length of \mathbf{v} is

$$
\sqrt{V_{1}^{2}+V_{2}^{2}+V_{3}^{2}}
$$

(c) A unit vector is a vector with \qquad
(d) $\mathbf{i}=\langle 1,0,0\rangle$ is the unit vector in the x-direction.
$\mathbf{j}=\langle\underline{0}, \underline{1}, \underline{0}\rangle$ is the unit vector in the y-direction.
$\mathbf{k}=\langle\underline{0}, \underline{O}, \perp\rangle$ is the unit vector in the z-direction.

Exercise 6

(a) How fast is the airplane going (with respect to the ground)?

The speed is the length of the velocity vector:

$$
\sqrt{200^{2}+100^{2}+30^{2}}=\sqrt{90900} \mathrm{mph}
$$

(b) Assuming the airplane is oriented in its direction of travel, at what angle is the nose pointed up?

$$
\theta=\sin ^{-1}\left(\frac{30}{\sqrt{50000}}\right)
$$

Exercise 7

Let $A=(5,2,7)$ and $B=(-2,7,-3)$. Find the unit vector that points in the direction from A to B.
First find some vector that points from A to B :

$$
\vec{v}=(-2-5,7-2,-3-7)=(-7,5,-10) .
$$

Now turn \vec{v} into a unit vector by divinding by $|\vec{v}|$.

$$
|\vec{v}|=\sqrt{(-7)^{2}+5^{2}+(-10)^{2}}=\sqrt{174}
$$

$$
\frac{1}{|\vec{v}|} \vec{v}=\left(\frac{-7}{\sqrt{174}}, \frac{5}{\sqrt{174}}, \frac{-10}{\sqrt{174}}\right)
$$

12.3 - THE DOT PRODUCT

Review

(a) The dot product of $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

(b) Two vectors are perpendicular (or orthogonal) if the angle between them is $\pi / 2$ (ie., 90°).
(c) Which vectors is the zero vector $\mathbf{0}$ orthogonal to?

$$
\overrightarrow{0} \text { is perpendicular to all vectors. }
$$

(d) Two vectors are orthogonal if and only if their dot product is \qquad

Exercise 8
Let $\mathbf{v}=a \mathbf{i}+3 \mathbf{j}$. For which values of a is \mathbf{v} orthogonal to $\langle 1,2,5\rangle$?

$$
\vec{V} \cdot\langle 1,2,5\rangle=a+6=0 \Leftrightarrow a=-6
$$

Exercise 9
Suppose $|\mathbf{a}|=3$ and $|\mathbf{b}|=2$.
(a) If $\mathbf{a} \cdot \mathbf{b}=6$, what do we know about the orientations of \mathbf{a} and \mathbf{b} ?

$$
6=\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=6 \cos \theta
$$

$$
\Rightarrow \cos \theta=1 \Rightarrow \theta=0 \Rightarrow \vec{a} \text { and } \vec{b} \text { arepointing in }
$$

(b) If $\mathbf{a} \cdot \mathbf{b}=-6$, what do we know about the orientations of \mathbf{a} and \mathbf{b} ? the same direction

$$
\begin{aligned}
& -6=\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=6 \cos \theta \\
& \Rightarrow \cos \theta=-1 \Rightarrow \theta=\pi \Rightarrow \vec{a} \text { and } \vec{b} \text { are pointing in }
\end{aligned}
$$ opposite directions

Exercise 10
Find the angle between the lines $x+2 y=7$ and $5 x-y=2$.

$$
\begin{aligned}
& \rightarrow \quad y \quad y=-\frac{x}{2}+\frac{7}{2} \quad y=5 x-2 \\
& \vec{a}=\langle 2,-1\rangle \quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \\
& \vec{b}=\langle 1,5\rangle \quad 2 \cdot 1+(-1)(5)=\sqrt{2^{2}+(-1)^{2}} \sqrt{1^{2}+5^{2}} \cos \theta \\
& -3=\sqrt{130} \cos \theta \\
& \theta=\cos ^{-1}\left(\frac{-3}{\sqrt{130}}\right)
\end{aligned}
$$

