12.3 - THE DOT PRODUCT (CONTINUED...)

Review

(a) The dot product of $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3},
$$

which is also equal to

$$
|\mathbf{a}||\mathbf{b}| \sin \theta
$$

(b) Two vectors are perpendicular (or orthogonal) if the angle between them is $\pi / 2$ (i.e., 90°).
(c) The zero vector $\mathbf{0}$ is orthogonal to all vectors.
(d) Two vectors are orthogonal if and only if their dot product is 0 .
(e) The vector projection of \mathbf{b} onto \mathbf{a}, denoted $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$, is given by the following picture and formula:
(f) The scalar projection of \mathbf{b} onto \mathbf{a}, denoted $\operatorname{comp}_{\mathbf{a}} \mathbf{b}$, is given by the formula:
(g) The formula for work is

Exercise 1

Find the angles of the triangle formed by the points $A(1,2,3), B(-1,2,-4)$, and $C(2,0,-1)$.

Exercise 2

Let E, F, and G be points in \mathbb{R}^{3}. Suppose $|\overrightarrow{E F}|=3$ and $|\overrightarrow{E G}|=4$. If $\overrightarrow{E F} \cdot \overrightarrow{E G}=10$, then what is the angle $\angle F E G$? What is the angle between the vectors $\overrightarrow{E F}$ and $\overrightarrow{G E}$?

Exercise 3

Suppose the points P, Q, R form an acute triangle. Is comp $\overrightarrow{P Q} \overrightarrow{Q R}$ positive or negative? Draw an obtuse triangle where the opposite is true.

Exercise 4

Let $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Then, we call v_{1} the " x-component of \mathbf{v} ". Explain why it makes sense that people often call comp $\mathbf{a} \mathbf{v}$ the " \mathbf{a}-component of \mathbf{v} ".

12.4 - THE CROSS PRODUCT

Review

(a) The cross product of $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is
which is also equal to
(b) The result of the cross product is a \qquad that points in the direction given by the
\qquad
(c) $\mathbf{a} \times \mathbf{b}$ is \qquad to both \mathbf{a} and \mathbf{b}.
(d) Two vectors \mathbf{a} and \mathbf{b} are perpendicular if and only if
(e) $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$. However, we have
(f) The order in which we do cross products matters: $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times(\mathbf{b} \times \mathbf{c})$.
(g) Cross products of the standard basis vectors:

$$
\begin{array}{rlr}
\mathbf{i} \times \mathbf{j}= & \mathbf{j} \times \mathbf{i}= \\
\mathbf{j} \times \mathbf{k}= & \mathbf{k} \times \mathbf{j}= \\
\mathbf{k} \times \mathbf{i}= & \mathbf{i} \times \mathbf{k}=
\end{array}
$$

(h) The area of a parallelogram formed by the vectors \mathbf{a} and \mathbf{b} is
(i) The volume of a parallelepiped formed by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is given by
(j) Torque is given by the formula
(k) The direction of the torque vector tells you

Exercise 5

Compute $\langle 1,5,-2\rangle \times\langle-2,1,3\rangle$.

Exercise 6

Find the area of the triangle formed by the points $A(1,2,3), B(-1,2,-4)$, and $C(2,0,-1)$.

Exercise 7

Find two unit vectors that are orthogonal to the plane that passes through the points $P(1,0,1)$, $Q(2,3,4)$, and $R(2,1,1)$.

12.5 - LINES AND PLANES

Review

(a) A vector (or parametric) equation for a line is of the form
(b) Taking the components of this equation, we obtain the of the line:

$$
\begin{aligned}
& x= \\
& y= \\
& z=
\end{aligned}
$$

(c) The symmetric equations of a line are of the form
(d) ___ lines are lines that do not intersect and are not parallel.
(e) The standard form for a line segment is

Exercise 8

Find the parametric and symmetric equations for the line that goes through the points $(6,2,-1)$ and (2, -4, 1).

Exercise 9

For this problem, use the line you found in the previous exercise.
(a) Does the line go through the point $(-2,-8,3)$?
(b) Where does the line intersect the plane $y=100$?

Exercise 10

Find parametric equations for the line $\frac{x-3}{2}=\frac{y+6}{7}=\frac{z-2}{3}$.

Exercise 11

Determine if the following pair of lines is intersecting, parallel, or skew: $L_{1}(t)=\langle 1+t,-2-3 t, 6+2 t\rangle$ and $L_{2}(t)=\langle 4+t,-6+2 t, 8-2 t\rangle$.

Exercise 12

Find the parametric and symmetric equations for a line passing through $(5,-2,1)$ that is parallel to the line $L(t)=\langle 6-2 t, 5+4 t,-2-t\rangle$.

Exercise 13

Find a parametric equation for the line segment that starts at $A(3,-1,-2)$ and goes 5 units in the direction $\langle 2,2,1\rangle$.

