12.3 – THE DOT PRODUCT (CONTINUED...)

Review

(a) The dot product of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ is

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3,$$

which is also equal to

 $|\mathbf{a}||\mathbf{b}|\sin\theta$.

- (b) Two vectors are perpendicular (or orthogonal) if the angle between them is $\pi/2$ (i.e., 90°).
- (c) The zero vector **0** is orthogonal to all vectors.
- (d) Two vectors are **orthogonal** if and only if their dot product is 0.
- (e) The **vector projection** of \mathbf{b} onto \mathbf{a} , denoted $\text{proj}_{\mathbf{a}}\mathbf{b}$, is given by the following picture and formula:

- (f) The **scalar projection** of ${\bf b}$ onto ${\bf a}$, denoted comp $_{\bf a}{\bf b}$, is given by the formula:
- (g) The formula for **work** is

Find the angles of the triangle formed by the points A(1, 2, 3), B(-1, 2, -4), and C(2, 0, -1).

Exercise 2

Let E, F, and G be points in \mathbb{R}^3 . Suppose $|\overrightarrow{EF}| = 3$ and $|\overrightarrow{EG}| = 4$. If $\overrightarrow{EF} \cdot \overrightarrow{EG} = 10$, then what is the angle $\angle FEG$? What is the angle between the vectors \overrightarrow{EF} and \overrightarrow{GE} ?

Suppose the points P, Q, R form an acute triangle. Is $\operatorname{comp}_{\overrightarrow{PQ}}\overrightarrow{QR}$ positive or negative? Draw an obtuse triangle where the opposite is true.

Exercise 4

Let $\mathbf{v} = (v_1, v_2, v_3)$. Then, we call v_1 the "*x*-component of \mathbf{v} ". Explain why it makes sense that people often call comp_{**a**} \mathbf{v} the "**a**-component of \mathbf{v} ".

12.4 - THE CROSS PRODUCT

Review

(a) The cross product of $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3)$ is

which is also equal to

(b) The result of the cross product is a ______ that points in the direction given by the

(c) $\mathbf{a} \times \mathbf{b}$ is _____ to both \mathbf{a} and \mathbf{b} .

(d) Two vectors ${\bf a}$ and ${\bf b}$ are perpendicular if and only if

- (e) $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$. However, we have
- (f) The order in which we do cross products matters: $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$.
- (g) Cross products of the standard basis vectors:

$\mathbf{i} imes \mathbf{j} =$	$\mathbf{j} imes \mathbf{i} =$
$\mathbf{j} imes \mathbf{k} =$	$\mathbf{k} imes \mathbf{j} =$
$\mathbf{k} imes \mathbf{i} =$	$\mathbf{i} imes \mathbf{k} =$

(h) The area of a parallelogram formed by the vectors ${\bf a}$ and ${\bf b}$ is

(i) The **volume** of a parallelepiped formed by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} is given by

- (j) **Torque** is given by the formula
- (k) The direction of the torque vector tells you

Exercise 5

Compute $\langle 1, 5, -2 \rangle \times \langle -2, 1, 3 \rangle$.

Exercise 6

Find the area of the triangle formed by the points A(1, 2, 3), B(-1, 2, -4), and C(2, 0, -1).

Find two unit vectors that are orthogonal to the plane that passes through the points P(1,0,1), Q(2,3,4), and R(2,1,1).

12.5 - LINES AND PLANES

Review

- (a) A vector (or parametric) equation for a line is of the form
- (b) Taking the components of this equation, we obtain the ______ of the line:
 - x =y =z =
- (c) The **symmetric equations** of a line are of the form
- (d) _____ lines are lines that do not intersect and are not parallel.
- (e) The standard form for a line segment is

Find the parametric and symmetric equations for the line that goes through the points (6, 2, -1) and (2, -4, 1).

Exercise 9

For this problem, use the line you found in the previous exercise.

(a) Does the line go through the point (-2, -8, 3)?

(b) Where does the line intersect the plane y = 100?

Find parametric equations for the line $\frac{x-3}{2} = \frac{y+6}{7} = \frac{z-2}{3}$.

Exercise 11

Determine if the following pair of lines is intersecting, parallel, or skew: $L_1(t) = \langle 1+t, -2-3t, 6+2t \rangle$ and $L_2(t) = \langle 4+t, -6+2t, 8-2t \rangle$.

Find the parametric and symmetric equations for a line passing through (5, -2, 1) that is parallel to the line $L(t) = \langle 6 - 2t, 5 + 4t, -2 - t \rangle$.

Exercise 13

Find a parametric equation for the line segment that starts at A(3, -1, -2) and goes 5 units in the direction (2, 2, 1).