12.3 - THE DOT PRODUCT (CONTINUED...)

Review

(a) The dot product of $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3},
$$

which is also equal to

$$
|\mathbf{a}||\mathbf{b}| \sin \theta
$$

(b) Two vectors are perpendicular (or orthogonal) if the angle between them is $\pi / 2$ (ie., 90°).
(c) The zero vector $\mathbf{0}$ is orthogonal to all vectors.
(d) Two vectors are orthogonal if and only if their dot product is 0 .
(e) The vector projection of \mathbf{b} onto \mathbf{a}, denoted prof $_{\mathbf{a}} \mathbf{b}$, is given by the following picture and formula:

$$
p r 0 \dot{a} \rightarrow \vec{b}=(\operatorname{comp} \underset{a}{ }) \frac{\vec{a}}{(\vec{a} \mid}
$$

(f) The scalar projection of \mathbf{b} onto \mathbf{a}, denoted $\operatorname{comp}_{\mathbf{a}} \mathbf{b}$, is given by the formula:

$$
\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}
$$

(g) The formula for work is

$$
\text { work }=\vec{F} \cdot \vec{d}
$$

Exercise 1
Find the angles of the triangle formed by the points $A(1,2,3), B(-1,2,-4)$, and $C(2,0,-1)$.

$$
\begin{aligned}
& \overrightarrow{A B}=\langle-2,0,-7\rangle \quad|\overrightarrow{A B}|=\sqrt{53} \\
& \overrightarrow{B C}=\langle 3,-2,3\rangle \quad|\overrightarrow{B C}|=\sqrt{22} \\
& \overrightarrow{A C}=\langle 1,-2,-4\rangle \quad|\overrightarrow{A C}|=\sqrt{21} \\
& E \cdot \operatorname{\theta }_{0}^{\boldsymbol{D}_{0}^{\mathrm{F}}} \\
& \overrightarrow{E F} \cdot \overrightarrow{E G}=|\overrightarrow{E F}||\overrightarrow{E G}| \cos \theta \\
& \theta=\cos ^{-1}\left(\frac{\overrightarrow{E F} \cdot \overrightarrow{E G}}{|\overrightarrow{E F}||\overrightarrow{E G}|}\right) \\
& \angle C A B=\cos ^{-1}\left(\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B B}||\vec{A}|}\right)=\cos ^{-1}\left(\frac{\langle-2,0,-7 \cdot \cdot\langle 1,-2,-4\rangle}{\sqrt{53} \sqrt{2 \mid}}\right)=\cos ^{-1}\left(\frac{26}{\mid \sqrt{52-2}}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\text { Exercise } 2}{ } \quad \underset{ }{\quad B C A} \cos ^{-1}\left(\frac{\overrightarrow{C B} \cdot \overrightarrow{C A}}{|\overrightarrow{C B}||\overrightarrow{C A}|}\right)=\cos ^{-1}\left(\frac{\langle-3,2,-3\rangle \cdot\langle-1,2,4\rangle}{\sqrt{22} \sqrt{21}}\right)=\cot ^{-1}\left(\frac{-5}{\sqrt{22 \cdot 21}}\right) \text {. }
\end{aligned}
$$

Let E, F, and G be points in \mathbb{R}^{3}. Suppose $|\overrightarrow{E F}|=3$ and $|\overrightarrow{E G}|=4$. If $\overrightarrow{E F} \cdot \overrightarrow{E G}=10$, then what is the angle $\angle F E G$? What is the angle between the vectors $\overrightarrow{E F}$ and $\overrightarrow{G E}$?

$$
\begin{aligned}
& 10=\overrightarrow{E F} \cdot \overrightarrow{E G}=|\overrightarrow{E F}||\overrightarrow{E G}| \cos (\angle F E G) \\
&=12 \cos (\angle F E G) \\
& \angle F E G=\cos ^{-1}\left(\frac{5}{6}\right)
\end{aligned}
$$

$$
\theta=\pi-\angle F E G=\pi-\cos ^{-1}\left(\frac{5}{6}\right)
$$

Exercise 3
Suppose the points P, Q, R form an acute triangle. Is comp $\overrightarrow{P Q} \overrightarrow{Q R}$ positive or negative? Draw an obtuse triangle where the opposite is true.

p

pointing in opposite directions,
so comp $\overrightarrow{P Q} \overrightarrow{Q R}$ is negative.

Exercise 4
prov $\overrightarrow{P Q} \overrightarrow{Q R}$ and $\overrightarrow{P Q}$ are pointing in the same direction, so comp $P \vec{Q} \overrightarrow{Q R}$ is positive.
Let $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Then, we call v_{1} the " x-component of \mathbf{v} ". Explain why it makes sense that people often call comp $\mathbf{a} \mathbf{v}$ the "a-component of \mathbf{v} ".

The \vec{a}-component of \vec{v} is precisely
what the x-component of \vec{v} would be if the x-axis pointed in the direction of \vec{a}.

12.4 - THE CROSS PRODUCT

Review

(a) The cross product of $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

which is also equal to

$$
|\vec{a}||\vec{b}| \sin \theta
$$

(b) The result of the cross product is a vector that points in the direction given by the right hand rule
(c) $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b}.

Non zfelj) Two vectors \mathbf{a} and \mathbf{b} are perpendicular if and only if $\vec{a} \times \vec{b}$.
(e) $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$. However, we have

$$
\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}
$$

(f) The order in which we do cross products matters: $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times(\mathbf{b} \times \mathbf{c})$.
(g) Cross products of the standard basis vectors:

$$
\begin{aligned}
\mathbf{i} \times \mathbf{j} & =\vec{k} & \mathbf{j} \times \mathbf{i}=-\vec{k} \\
\mathbf{j} \times \mathbf{k} & =\vec{\imath} & \mathbf{k} \times \mathbf{j}=-\vec{\imath} \\
\mathbf{k} \times \mathbf{i} & =\vec{\jmath} & \mathbf{i} \times \mathbf{k}=-\vec{\jmath}
\end{aligned}
$$

(h) The area of a parallelogram formed by the vectors \mathbf{a} and \mathbf{b} is

$$
|\vec{a} \times \vec{b}|
$$

(i) The volume of a parallelepiped formed by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is given by

$$
|\vec{a} \cdot(\vec{b} \times \vec{c})|
$$

(j) Torque is given by the formula

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

(k) The direction of the torque vector tells you the axis of rotation.

Exercise 5
Compute $\langle 1,5,-2\rangle \times\langle-2,1,3\rangle$.

$$
\begin{aligned}
\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 5 & -2 \\
-2 & 1 & 3
\end{array}\right| & =\left|\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right| \vec{l}-\left|\begin{array}{cc}
1 & -2 \\
-2 & 3
\end{array}\right| \vec{\jmath}+\left|\begin{array}{cc}
1 & 5 \\
-2 & 1
\end{array}\right| \vec{k} \\
& =17 \vec{\imath}+\vec{\jmath}+11 \vec{k}
\end{aligned}
$$

Exercise 6
Find the area of the triangle formed by the points $A(1,2,3), B(-1,2,-4)$, and $C(2,0,-1)$.

$$
\overrightarrow{A B}=\langle-2,0,-7\rangle, \overrightarrow{A C}=\langle 1,-2,-4\rangle .
$$

area of $\triangle A B C=\frac{1}{2}$ (aver of perallilyman)

$$
\begin{aligned}
& =\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-2 & 0 & -7 \\
1 & -2 & -4
\end{array}\right)\right| \\
& =\frac{1}{2}|-14 \vec{\imath}-1 S \vec{\jmath}+4 \vec{k}|
\end{aligned}
$$

Page 5 of 9

$$
=\frac{1}{2} \sqrt{14^{2}+15^{2}+4^{2}}
$$

Exercise 7

Find two unit vectors that are orthogonal to the plane that passes through the points $P(1,0,1)$, $Q(2,3,4)$, and $R(2,1,1)$.

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 1,3,3\rangle \quad \overrightarrow{P R}=\langle 1,1,0\rangle \\
& \overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 3 & 3 \\
1 & 1 & 0
\end{array}\right|=\langle-3,+3,-2\rangle . \\
& \frac{|\langle-3,3,-2\rangle|=\sqrt{3^{2}+3^{2}+2^{2}}=\sqrt{22} .}{\left(\left\langle\frac{-3}{\sqrt{22}}, \frac{3}{\sqrt{22}}, \frac{-2}{\sqrt{22}}\right\rangle \text { and }\left\langle\frac{3}{\sqrt{22}}, \frac{-3}{\sqrt{22}}, \frac{2}{\sqrt{22}}\right\rangle .\right.} \\
& 12.5-\text { LINES AND PLANES }
\end{aligned}
$$

Review

(a) A vector (or parametric) equation for a line is of the form

$$
\vec{r}(t)=\vec{r}_{0}+t \vec{v} .
$$

(b) Taking the components of this equation, we obtain the parametric equations of
the line:

$$
\begin{aligned}
& x=x_{0}+t v_{1} \\
& y=y_{0}+t v_{2} \\
& z=z_{0}+t v_{3}
\end{aligned}
$$

(c) The symmetric equations of a line are of the form

$$
\frac{x-x_{0}}{v_{1}}=\frac{y-y_{0}}{v_{2}}=\frac{z-z_{0}}{v_{3}} .
$$

(d) Skew lines are lines that do not intersect and are not parallel.
(e) The standard form for a line segment is

$$
\vec{r}(t)=(1-t) \vec{r}_{0}+t \vec{r}_{1} .
$$

Exercise 8
Find the parametric and symmetric equations for the line that goes through the points $(6,2,-1)$ and $(2,-4,1)$.

$$
\begin{aligned}
& \vec{V}=\langle 6-2,2--4,-1-1\rangle=\langle 4,6,-2\rangle . \\
& \vec{r}(t)=\langle 6,2,-1\rangle+t \vec{v} \\
& =\langle 6+4 t, 2+6 t,-1-2 t\rangle \\
& x=6+4 t \\
& y=2+6 t \\
& z=-1-2 t \\
& \frac{x-6}{4}=\frac{y-2}{6}=\frac{z+1}{-2}
\end{aligned}
$$

Exercise 9
For this problem, use the line you found in the previous exercise.
(a) Does the line go through the point $(-2,-8,3)$?

Plug into the symmetric equations:

Since the point does not satisfy the symmetric equation, it is not on the line.
(b) Where does the line intersect the plane $y=100$?

$$
\begin{aligned}
& 100=2+6 t \Rightarrow t=\frac{98}{6}=\frac{49}{3} \\
& \vec{r}\left(\frac{49}{3}\right)=\left\langle 6+4\left(\frac{49}{3}\right), 100,-1-2\left(\frac{49}{3}\right)>\right.
\end{aligned}
$$

Exercise 10
Find parametric equations for the line $\frac{x-3}{2}=\frac{y+6}{7}=\frac{z-2}{3}$.

Exercise 11
Determine if the following pair of lines is intersecting, parallel, or skew: $L_{1}(t)=\langle 1+t,-2-3 t, 6+2 t\rangle$ and $L_{2}(t)=\langle 4+t,-6+2 t, 8-2 t\rangle$.
If they intersect, then there must be t and s such that

$$
\begin{gathered}
\langle 1+t,-2-3 t, 6+2 t\rangle=\langle 4+5,-6+2 s, 8-2 s\rangle \\
1+t=4+s \Rightarrow t=3+s \\
-2-3 t=-6+2 s \Rightarrow-2-3(3+s)=-6+2 s \\
\Rightarrow-2-9-3 s=-6+2 s \\
\Rightarrow 5=-1 \Rightarrow t=2 \\
t(2)=\langle 3,-8,10\rangle=L_{2}(-1)=\langle 3,-8,10\rangle
\end{gathered}
$$

Therefore, L_{1} and L_{2} intersect at $(3,-8,10)$.

Exercise 12
Find the parametric and symmetric equations for a line passing through $(5,-2,1)$ that is parallel to the line $L(t)=\langle 6-2 t, 5+4 t,-2-t\rangle$.
L joes in the direction $\langle-2,4,-1\rangle$.
Plugging into the equation for a line:

$$
\langle 5,-2,1\rangle+t\langle-2,4,-1\rangle
$$

Exercise 13
Find a parametric equation for the line segment that starts at $A(3,-1,-2)$ and goes 5 units in the direction $\langle 2,2,1\rangle$.

$$
|\langle 2,2,1\rangle|=\sqrt{2^{2}+2^{2}+1^{2}}=3
$$

So, the unit vector in the $\langle 2,2,1\rangle$ direction is $\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle$.

So, the other endpoint of the line segment is

$$
\left(3+5\left(\frac{2}{7}\right),-1+5\left(\frac{2}{3}\right),-2+5\left(\frac{1}{3}\right)\right)=\left(\frac{26}{3}, \frac{14}{3}, \frac{10}{3}\right)
$$

Plugging into the equation for a line segment:

$$
\underbrace{(1-t)\langle 3,-1,-2\rangle+t\left\langle\frac{26}{3}, \frac{14}{3}, \frac{10}{3}\right\rangle \quad(0 \leq t \leq 1)}_{\text {Page } 9 \text { of } 9}
$$

