EXAM 1 REVIEW

Exercise 1

Describe the following regions of \mathbb{R}^{3} in words.
(a) $z>0$
(b) $x=y$
(c) $x^{2}+y^{2}=4$
(d) $(x-1)^{2}+(y-2)^{2}+(z+1)^{2} \leq 9$
(e) $1 \leq z^{2}+x^{2} \leq 9$

Exercise 2

What is the intersection of the following regions in \mathbb{R}^{3} ?
(a) $x \geq 0$ and $x^{2}+y^{2}+z^{2} \leq 4$
(b) $x^{2}+z^{2}=1$ and $y=2$
(c) $x^{2}+z^{2}=4$ and $z=1$
(d) $1 \leq x^{2}+y^{2}+z^{2} \leq 9$ and $y=2$

Exercise 3

P, Q, and R form a triangle. What is $\overrightarrow{P Q}+\overrightarrow{Q R}+\overrightarrow{R P}$?

Exercise 4

Let $\mathbf{u}=\langle 3,-1,2\rangle$. Find a vector \mathbf{v} such that \mathbf{v} goes in the direction of $\langle 1,2,-2\rangle$ and $\mathrm{comp}_{\mathbf{u}} \mathbf{v}=-4$.

Exercise 5

Is the triangle formed by the vertices $A(1,2,3), B(5,1,6), C(3,4,1)$ a right triangle?

Exercise 6

Find the vector projection of $\overrightarrow{A B}$ onto $\overrightarrow{B C}$.

Exercise 7

Find a unit vector perpendicular to the plane containing the point $(-2,5,2)$ and the line $L(t)=\langle 2 t, 3+$ $t, 1-2 t\rangle$.

Exercise 8

Let V be the parallelepiped whose edges all have length 2 . One side of V lies in the $x y$-plane. The angle between the edges that lie in the $x y$-plane is 45°. An edge of V that is not in the $x y$-plane makes a 30° angle with the z-axis. What is the volume of V ?

Exercise 9

Find the point on the line $L(t)=\langle 2+t, 2-2 t,-1+t\rangle$ that is closest to the point $(-4,1,5)$.

Exercise 10

What is the domain of $\mathbf{r}(t)=\left\langle\sqrt{2 t+4}, \ln (3-t),(1-t)^{-1}\right\rangle$?

Exercise 11

Find parametric and symmetric equations for a line that is perpendicular to the plane $3 x-7 y+4 z=8$ and passes through the point $(5,1,-4)$.

Exercise 12

Determine if the following pair of lines is intersecting, parallel, or skew: $L_{1}(t)=\langle 1+2 t,-2-t, 3+2 t\rangle$ and $L_{2}(t)=\langle 1+t,-2+3 t, 1+2 t\rangle$.

Exercise 13

Find a plane whose intercepts with the x, y, and z axes are 3,7 , and -2 , respectively.

Exercise 14

Find the intersection between the plane $x+y=z$ and the plane $3 x-2 y-2 z=5$.

Exercise 15

Draw the traces of the equation $x^{2}-3 y^{2}+z^{2}=4$. What shape is it?

Exercise 16

Draw the traces of the equation $3 x^{2}-y^{2}-2 z^{2}=0$. What shape is it?

Exercise 17

Find the intersection between the curve $\mathbf{r}(t)=\left\langle t^{2}, \cos (t), \sin (t)\right\rangle$ and the surface $3 x^{2}+2 y^{2}+2 z^{2}=5$.

Exercise 18

Draw the projection of $\mathbf{r}(t)=\left\langle t^{2}, t, \cos (t)\right\rangle$ onto the $x y$ and $y z$ planes.

Exercise 19

Find the line tangent to $\mathbf{r}(t)=\left\langle t^{2}, t, \cos (\pi t)\right\rangle$ at the point $(4,-2,1)$.

Exercise 20

What is $\int_{1}^{2}\left(\sin (\pi t) \mathbf{i}+e^{2 t} \mathbf{j}-7 \mathbf{k}\right) \mathrm{d} t$?

Exercise 21

Find the length of the curve $\mathbf{r}(t)=\langle\sin (\pi t), 3 t, \cos (\pi t)\rangle$ from $(0,0,1)$ to $(0,6,1)$.

