EXAM 1 REVIEW

Exercise 1

Describe the following regions of \mathbb{R}^3 in words.

- (a) z > 0
- (b) x = y
- (c) $x^2 + y^2 = 4$
- (d) $(x-1)^2 + (y-2)^2 + (z+1)^2 \le 9$
- (e) $1 \le z^2 + x^2 \le 9$

Exercise 2

What is the intersection of the following regions in $\mathbb{R}^3?$

- (a) $x \ge 0$ and $x^2 + y^2 + z^2 \le 4$
- (b) $x^2 + z^2 = 1$ and y = 2
- (c) $x^2 + z^2 = 4$ and z = 1
- (d) $1 \le x^2 + y^2 + z^2 \le 9$ and y = 2

P, Q, and R form a triangle. What is $\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RP}$?

Exercise 4

Let $\mathbf{u} = \langle 3, -1, 2 \rangle$. Find a vector \mathbf{v} such that \mathbf{v} goes in the direction of $\langle 1, 2, -2 \rangle$ and $\text{comp}_{\mathbf{u}} \mathbf{v} = -4$.

Is the triangle formed by the vertices A(1, 2, 3), B(5, 1, 6), C(3, 4, 1) a right triangle?

Exercise 6

Find the vector projection of \overrightarrow{AB} onto \overrightarrow{BC} .

Find a unit vector perpendicular to the plane containing the point (-2, 5, 2) and the line $L(t) = \langle 2t, 3 + t, 1 - 2t \rangle$.

Exercise 8

Let V be the parallelepiped whose edges all have length 2. One side of V lies in the xy-plane. The angle between the edges that lie in the xy-plane is 45° . An edge of V that is not in the xy-plane makes a 30° angle with the z-axis. What is the volume of V?

Find the point on the line $L(t) = \langle 2 + t, 2 - 2t, -1 + t \rangle$ that is closest to the point (-4, 1, 5).

Exercise 10

What is the domain of $\mathbf{r}(t) = \langle \sqrt{2t+4}, \ln(3-t), (1-t)^{-1} \rangle$?

Find parametric and symmetric equations for a line that is perpendicular to the plane 3x - 7y + 4z = 8and passes through the point (5, 1, -4).

Exercise 12

Determine if the following pair of lines is intersecting, parallel, or skew: $L_1(t) = \langle 1+2t, -2-t, 3+2t \rangle$ and $L_2(t) = \langle 1+t, -2+3t, 1+2t \rangle$.

Find a plane whose intercepts with the x, y, and z axes are 3, 7, and -2, respectively.

Exercise 14

Find the intersection between the plane x + y = z and the plane 3x - 2y - 2z = 5.

Draw the traces of the equation $x^2 - 3y^2 + z^2 = 4$. What shape is it?

Exercise 16

Draw the traces of the equation $3x^2 - y^2 - 2z^2 = 0$. What shape is it?

Find the intersection between the curve $\mathbf{r}(t) = \langle t^2, \cos(t), \sin(t) \rangle$ and the surface $3x^2 + 2y^2 + 2z^2 = 5$.

Exercise 18

Draw the projection of $\mathbf{r}(t) = \langle t^2, t, \cos(t) \rangle$ onto the xy and yz planes.

Find the line tangent to $\mathbf{r}(t) = \langle t^2, t, \cos(\pi t) \rangle$ at the point (4, -2, 1).

Exercise 20

What is
$$\int_{1}^{2} \left(\sin(\pi t)\mathbf{i} + e^{2t}\mathbf{j} - 7\mathbf{k} \right) \mathrm{d}t$$
?

Find the length of the curve $\mathbf{r}(t) = \langle \sin(\pi t), 3t, \cos(\pi t) \rangle$ from (0, 0, 1) to (0, 6, 1).