EXAM 1 REVIEW

Exercise 1
Describe the following regions of \mathbb{R}^{3} in words.
(a) everything above the $x y$-plane
(a) $z>0$
(b) $x=y$
(c) $x^{2}+y^{2}=4$
(d) $(x-1)^{2}+(y-2)^{2}+(z+1)^{2} \leq 9$
(c) Cylinder with radius 2
(e) $1 \leq z^{2}+x^{2} \leq 9$
(e) filled in cylinder of radius 3 with the middle part of radius / cut out.
(b) the plane $x=y$ centered at the origin that extends infinitely in the z-direction.
(d) filled in ball of radius 3 centered at $(1,2,-1)$.
Exercise 2
What is the intersection of the following regions in \mathbb{R}^{3} ?
(a) $x \geq 0$ and $x^{2}+y^{2}+z^{2} \leq 4$
(a) half of the filled in ball
(b) $x^{2}+z^{2}=1$ and $y=2$
(c) $x^{2}+z^{2}=4$ and $z=1$
(d) $1 \leq x^{2}+y^{2}+z^{2} \leq 9$ and $y=2$
(b) circle of radius 1 .
(c) two lines
(d) a filled in circle

Exercise 3
P, Q, and R form a triangle. What is $\overrightarrow{P Q}+\overrightarrow{Q R}+\overrightarrow{R P}$?

They cancel each other out, so you jet $\overrightarrow{0}$.

Exercise 4
Let $\mathbf{u}=\langle 3,-1,2\rangle$. Find a vector \mathbf{v} such that \mathbf{v} goes in the direction of $\langle 1,2,-2\rangle$ and $\operatorname{comp}_{\mathbf{u}} \mathbf{v}=-4$.

$$
\begin{aligned}
& \vec{v}=c\langle 1,2,-2\rangle \text { for some } c . ~(w e \text { want to find c.) } \\
& \operatorname{comp}_{\vec{u}} \vec{v}=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}|}=\frac{3 c-2 c-4 c}{\sqrt{3^{2}+(-1)^{2}+2^{2}}}=\frac{-3 c}{\sqrt{14}}=-4 .
\end{aligned}
$$

Exercise 5
Is the triangle formed by the vertices $A(1,2,3), B(5,1,6), C(3,4,1)$ a right triangle?
Idea: Take the dot product of the sidles. If a dot product is O, then the sides are
perpendicular (ie., it is a right triangle).

$$
\begin{array}{ll}
\overrightarrow{A B}=\langle 4,-1,3\rangle & \overrightarrow{A B} \cdot \overrightarrow{B C}=4(-2)-k(z)+3(-5)=-26 . \\
\overrightarrow{B C}=\langle-2,3,-5\rangle & \overrightarrow{A B} \cdot \overrightarrow{A C}=4(2)-1(2)+3(-2)=0 .
\end{array}
$$

$$
\overrightarrow{A C}=\langle 2,2,-2\rangle
$$

Yes, it is a right triangle.

Exercise 6
Find the vector projection of $\overrightarrow{A B}$ onto $\overrightarrow{B C}$.

$$
\begin{aligned}
\text { pro } \overrightarrow{A C} & =\frac{\overrightarrow{A B} \cdot \overrightarrow{B C}}{|\overrightarrow{B C}|^{2}} \overrightarrow{B C} \\
& =\frac{-26}{(-2)^{2}+3^{2}+(-5)^{2}}<-2,3,-5> \\
& =\frac{-26}{38}<-2,3,-5>
\end{aligned}
$$

Exercise 7
Find a unit vector perpendicular to the plane containing the point $(-2,5,2)$ and the line $L(t)=\langle 2 t, 3+$ $t, 1-2 t\rangle$.

The line contains the point $(0,3,1)$ and goes in the direction $\langle 2,1,-2\rangle$. So, subtracting the points, we get another vector in the plane: $\langle-2-0, s-3,2-1\rangle=\langle-2,2,1\rangle$. Take their cross product to find a vector 1 to the plane: $\langle 2,1,-2\rangle \times\langle-2,2,1\rangle=\langle 5,2,6\rangle$. Then divide by the Exercise 8 length to jet a unit vector: $\frac{1}{\sqrt{5^{2}+2^{2}+6^{2}}}\langle 5,2,6\rangle$. Let V be the parallelepiped whose edges all have length 2. One side of V lies in the $x y$-plane. The angle between the edges that lie in the $x y$-plane is 45°. An edge of V that is not in the $x y$-plane makes a 30° angle with the z-axis. What is the volume of V ?
$V=|\vec{a} \cdot(\vec{b} \times \vec{c})|$. Let \vec{b} and \vec{c} be the vectors in the $x y$-plane. Then, $|\vec{b} \times \vec{c}|=|\vec{b}||\vec{c}| \sin \theta$

$$
=2 \cdot 2 \cdot \sin \left(45^{\circ}\right)=2 \sqrt{2} .
$$

By the right hand rule, the direction of $\vec{b} \times \vec{c}$ is either in the z or $-z$ direction. Either way,

$$
\begin{aligned}
|\vec{a} \cdot(\vec{b} \times \vec{c})| & =|\vec{a}||\vec{b} \times \vec{c}| \underbrace{| | \cos (\vec{\theta}) \mid}=\frac{\sqrt{3}}{2}
\end{aligned}=30^{\circ} \text { or } 150^{\circ}
$$

Page 4 of 11

Exercise 9
Find the point on the line $L(t)=\langle 2+t, 2-2 t,-1+t\rangle$ that is closest to the point $(-4,1,5)$.

$$
\begin{aligned}
\operatorname{proj} & \langle-6,-1,6\rangle=\frac{\langle-6,-1,6\rangle \cdot\langle 1,-2,1\rangle}{1^{2}+(-2)^{2}+1^{2}}\langle 1,-2,1\rangle
\end{aligned}=\frac{2}{6}\langle 1,-2,1\rangle
$$

Exercise 10
What is the domain of $\mathbf{r}(t)=\left\langle\sqrt{2 t+4}, \ln (3-t),(1-t)^{-1}\right\rangle$?
$\sqrt{2 t+4}$ is defined for $2 t+4 \geq 0 \Rightarrow t \geq-2$.
$\ln (3-t)$ is defined for $3-t>0 \Rightarrow t<3$. $(1-t)^{-1}$ is defined for $t \neq 1$.

The domain of $\vec{r}(t)$ is where all the components are defined, so the domain of $\vec{r}(t)$ is

$$
[-2,1) \cup(1,3)
$$

Exercise 11
Find parametric and symmetric equations for a line that is perpendicular to the plane $3 x-7 y+4 z=8$ and passes through the point $(5,1,-4)$.
Normal vector to the plane: $\langle 3,-7,4\rangle$.
The line must jo in this direction, so its parametric equal ion is

$$
L(t)=\langle 5,1,-4\rangle+t\langle 3,-7,4\rangle
$$

To find the symmetric equations, solve for t and set them equal to each other:

$$
\begin{aligned}
& x=5+3 t \Rightarrow t=\frac{x-5}{3} \\
& y=1-7 t \Rightarrow t=\frac{y-1}{-7}
\end{aligned} \quad\left[\begin{array}{l}
x-5 \\
3
\end{array}=\frac{y-1}{-7}=\frac{z+4}{4}\right.
$$

Exercise $12 \quad z=-4+4 t \Rightarrow t=\frac{z+4}{4}$
Determine if the following pair of lines is intersecting, parallel, or skew: $L_{1}(t)=\langle 1+2 t,-2-t, 3+2 t\rangle$ and $L_{2}(t)=\langle 1+t,-2+3 t, 1+2 t\rangle$.
L, goes in the direction of $\langle 2,-1,2\rangle$.
L_{2} goes in the direction of $\langle 1,3,2\rangle$.
If they intersect, then thane is t and s such that

$$
\begin{aligned}
& L_{1}(t)=L_{2}(s) . \\
& \quad 1+2 t=1+s \Rightarrow s=2 t \\
& -2-t=-2+3 t \Rightarrow t=0 \Rightarrow s=0
\end{aligned}
$$

$L,(0)=\langle 1,-2,3\rangle$ 谅 equal, so they do wot intersect. $L_{2}(0)=\langle 1,-2,1\rangle$

Exercise 13
Find a plane whose intercepts with the x, y, and z axes are 3,7 , and -2 , respectively. $(3,0,0),(0,7,0)$, and $(0,0,-2)$ are on the plane. $\Rightarrow\langle 3,-7,0\rangle$ and $\langle 3,0,2\rangle$ are in the plane. $\Rightarrow\langle 3,-7,0\rangle \times\langle 3,0,2\rangle=\langle-14,-6,21\rangle$ is 1 to the plane.

Therefore, the plane is

$$
-14(x-3)-6(y-0)+21(z-0)=0
$$

Exercise 14
Find the intersection between the plane $x+y=z$ and the plane $3 x-2 y-2 z=5$.
The normal vectors for these planes are $\langle 1,1,-1\rangle$ and $\langle 3,-2,-2\rangle$. The line must be 1 to both these normal vectors since the line lies in both planes. So, we can find the direction of the line by taking the cross product of these normal vectors:

$$
\langle 1,1,-1\rangle \times\langle 3,-2,-2\rangle=\langle-4,-1,-5\rangle .
$$

Finally, plug this into the equation for a line:
Now, find a point on the lime by plugging $z=x+y$ into $3 x-2 y-2 z=5$:
$3 x-2 y-2(x+y)=5 \Rightarrow x=5+4 y$. Choose $y=0$. Then, $x=5$ and $z=5$.

Exercise 15
Draw the traces of the equation $x^{2}-3 y^{2}+z^{2}=4$. What shape is it? $z=c$ traces:

$$
x^{2}-3 y^{2}=4-c^{2} \text { hyperbolas }
$$

$$
y=c \text { traces: }
$$

$$
x^{2}+z^{2}=4+3 c^{2} \quad \text { circles }
$$

$$
x=c \text { traces: }
$$

$$
-3 y^{2}+z^{2}=4-c^{2} \quad \text { hyperbolas }
$$

hyperboloid of one sheet
Exercise 16

$$
\begin{aligned}
z= & c \text { traces: } \\
& 3 x^{2}-y^{2}=2 c^{2} \quad \text { hyperbolas } \\
y= & c \text { traces: } \\
& 3 x^{2}-2 z^{2}=c^{2} \text { hyperbolas } \\
x= & c \text { traces: } \\
& -y^{2}-2 z^{2}=-3 c^{2} \text { ellipses }
\end{aligned}
$$

Cone

Page 8 of 11

Exercise 17
Find the intersection between the curve $\mathbf{r}(t)=\left\langle t^{2}, \cos (t), \sin (t)\right\rangle$ and the surface $3 x^{2}+2 y^{2}+2 z^{2}=5$.
Plug $x=t^{2}, y=\cos (t), z=\sin (t)$ into the surface equation.

$$
\begin{aligned}
& 3\left(t^{2}\right)^{2}+2 \cos ^{2}(t)+2 \sin ^{2}(t)=5 \\
& 3 t^{4}+2=5 \\
& 3 t^{4}=-3 \\
& t^{4}=-1 \\
& \Rightarrow t= \pm 1 \text {, so } \vec{r}(t) \text { inter sects the surface at } \\
& \vec{r}(-1)=(1, \cos (-1), \sin (-1)) \text { and } \vec{r}(1)=(1, \cos (1), \sin (1)) .
\end{aligned}
$$

Exercise 18
Draw the projection of $\mathbf{r}(t)=\left\langle t^{2}, t, \cos (t)\right\rangle$ onto the $x y$ and $y z$ planes.
Projection onto $x y$-plane: Ignore the z-coordinate.

Projection onto the $y z$-plane: Ignore the x-coordinate.

Exercise 19
Find the line tangent to $\mathbf{r}(t)=\left\langle t^{2}, t, \cos (\pi t)\right\rangle$ at the point $(4,-2,1)$.
$(4,-2,1)$ corresponds to $t=-2$. ie., $\vec{r}(-2)=\langle 4,-2,1\rangle$.

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\langle 2 t, 1,-\pi \sin (\pi t)\rangle \\
\vec{r}^{\prime}(-2) & =\langle-4,1,-\pi \sin (-2 \pi)\rangle \\
& =\langle-4,1,0\rangle . \\
\vec{L}(t) & =\langle 4,-2,1\rangle+t\langle-4,1,0\rangle .
\end{aligned}
$$

Exercise 20
What is $\int_{1}^{2}\left(\sin (\pi t) \mathbf{i}+e^{2 t} \mathbf{j}-7 \mathbf{k}\right) d t$?
Just integrate each component separate ely.

$$
\begin{aligned}
& \int_{1}^{2} \sin (\pi t) \vec{\imath}+e^{2 t} \vec{\jmath}-7 \vec{k} d t \\
& =\int_{1}^{2} \sin (\pi t) d t \vec{\imath}+\int_{1}^{2} e^{2 t} d t \vec{\jmath}-7 \int_{1}^{2} d t \vec{k} \\
& =-\left.\frac{1}{\pi} \cos (\pi t)\right|_{1} ^{2} \vec{\imath}+\left.\frac{1}{2} e^{2 t}\right|_{1} ^{2} \vec{\jmath}-7 \vec{k} \\
& =-\frac{1}{\pi}(\cos (2 \pi)-\cos (\pi)) \vec{l}+\frac{1}{2}\left(e^{4}-e^{2}\right) \vec{\jmath}-7 \vec{k} \\
& =\frac{-2}{\pi} \vec{l}+\frac{1}{2}\left(e^{4}-e^{2}\right) \vec{\jmath}-7 \vec{k}
\end{aligned}
$$

Exercise 21
Find the length of the curve $\mathbf{r}(t)=\langle\sin (\pi t), 3 t, \cos (\pi t)\rangle$ from $(0,0,1)$ to $(0,6,1)$.

$$
\begin{aligned}
& (0,0,1) \text { corresponds to } t=0 . \\
& (0,6,1) \text { corresponds to } t=2 .
\end{aligned}
$$

$$
\vec{r}^{\prime}(t)=\langle\pi \cos (\pi t), 3,-\pi \sin (\pi t)\rangle
$$

$$
L=\int_{0}^{2}\left|\vec{r}^{\prime}(t)\right| d t
$$

$$
=\int_{0}^{2} \sqrt{(\pi \cos (\pi t))^{2}+3^{2}+(-\pi \sin (\pi t t))^{2}} d t
$$

$$
=\int_{0}^{2} \sqrt{\pi^{2}+9} d t
$$

$$
=2
$$

