EXAM 1 REVIEW

Exercise 1

Describe the following regions of \mathbb{R}^3 in words.

- (a) z > 0(b) x = y(c) $x^2 + y^2 = 4$
 - (d) $(x-1)^2 + (y-2)^2 + (z+1)^2 \le 9$
- (e) 1 ≤ z² + x² ≤ 9
 (e) filled in cylinder of radius 3 with the middle part of radius 1 cut out.

(a) everything above the xy-plane

Exercise 2

What is the intersection of the following regions in \mathbb{R}^3 ?

(a) $x \ge 0$ and $x^2 + y^2 + z^2 \le 4$ (b) $x^2 + z^2 = 1$ and y = 2(c) $x^2 + z^2 = 4$ and z = 1(d) $1 \le x^2 + y^2 + z^2 \le 9$ and y = 2(a) helf of the filled in ball centered at the origin with radius 2. (b) circle of radius 1. (c) two lines (d) a filled in circle

P, *Q*, and *R* form a triangle. What is $\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RP}$?

Exercise 4

Let $\mathbf{u} = \langle 3, -1, 2 \rangle$. Find a vector \mathbf{v} such that \mathbf{v} goes in the direction of $\langle 1, 2, -2 \rangle$ and $\operatorname{comp}_{\mathbf{u}} \mathbf{v} = -4$.

$$\vec{V} = C < (1,2,-2) \quad \text{for some } C. \quad (\text{we want to find } c)$$

$$Comp_{\vec{u}} \quad \vec{V} = \frac{\vec{u} \cdot \vec{V}}{1\vec{u} \cdot 1} = \frac{3c-2c-4c}{53^2+(-1)^2+2^2} = -\frac{3c}{54} = -4.$$

$$\Rightarrow C = \frac{45}{54} = -4.$$

$$\vec{V} = \zeta = \frac{45}{3} = -4.$$

$$\vec{V} = \zeta = \frac{45}{3} = -4.$$

Is the triangle formed by the vertices A(1, 2, 3), B(5, 1, 6), C(3, 4, 1) a right triangle?

I dea : Take the dot product of the sides. If a
dot product is O, then the sides are
perpendicular (i.e., it is a right triangle).

$$\overrightarrow{AB} = \langle 4, -1, 3 \rangle$$

 $\overrightarrow{BC} = \langle -2, 3, -S \rangle$
 $\overrightarrow{AC} = \langle 2, 2, -2 \rangle$
Yes, it is a right triangle

Exercise 6

Find the vector projection of \overrightarrow{AB} onto \overrightarrow{BC} .

$$proj_{\vec{BC}} \vec{AC} = \frac{\vec{AB} \cdot \vec{BC}}{|\vec{BC}|^2} \vec{BC}$$

$$= \frac{-26}{(-2)^{2}+3^{2}+(5)^{2}} < -2, 3, -5 >$$
$$= \frac{-26}{38} < -2, 3, -5 >.$$

Find a unit vector perpendicular to the plane containing the point (-2, 5, 2) and the line $L(t) = \langle 2t, 3 + t, 1 - 2t \rangle$.

The line contains the point
$$(0,3,1)$$
 and
goes in the direction $<2,1,-2>$. So, subtracting
the points, we get another vector in the plane:
 $<-2-0, S-3, 2-1> = <-2, 2, 1>$. Take their
cross product to find a vector \bot to the plane:
 $<2,1,-2> < <-2,2,1> = <5,2,6>$. Then divide by the
Exercise 8 Length to get a unit vector:
 $\int \frac{1}{\sqrt{5^2+2^2+6^2}} < \int \frac{5}{3}, 2 < 2$.
Let V be the parallelepiped whose edges all have length 2. One side of V lies in the xy-plane. The
angle between the edges that lie in the xy-plane is 45°. An edge of V that is not in the xy-plane makes
 $= 30^\circ$ angle with the z-axis. What is the volume of V?

$$V = |\vec{a} \cdot (\vec{b} \times \vec{c})|$$
. Let \vec{b} and \vec{c} be the vectors
in the xy-plane. Then, $|\vec{b} \times \vec{c}| = |\vec{b}||\vec{c}| \sin\theta$
 $= 2 \cdot 2 \cdot \sin(45^\circ) = 2\sqrt{2}$.

By the right hand rule, the direction of
$$\vec{b} \times \vec{c}$$
 is either
in the 2 or -2 direction. Either way,

$$\left|\vec{a} \cdot (\vec{b} \times \vec{c})\right| = \left|\vec{a}\right| \left|\vec{b} \times \vec{c}\right| \left|\cos\left(\frac{\vec{b}}{2}\right)\right| = \frac{30^{\circ} \text{ or } 150^{\circ}}{= \frac{53}{2}}$$
$$= 2 \cdot 252 \cdot \frac{53}{2} = 256.$$

Page 4 of 11

Find the point on the line $L(t) = \langle 2 + t, 2 - 2t, -1 + t \rangle$ that is closest to the point (-4, 1, 5).

Exercise 10

What is the domain of $\mathbf{r}(t) = \langle \sqrt{2t+4}, \ln(3-t), (1-t)^{-1} \rangle$?

$$\int 2t+4 \text{ is defined for } 2t+4 \ge 0 \implies t \ge -2.$$

$$\ln (3-t) \text{ is defined for } 3-t>0 \implies t < 3.$$

$$(1-t)^{-1} \text{ is defined for } t \ne 1.$$
The domain of $\vec{r}^{2}(t)$ is where all the components are defined, so the domain of $\vec{r}(t)$ is
$$(1-2,1) \cup (1,3)$$
Page 5 of 11

Find parametric and symmetric equations for a line that is perpendicular to the plane 3x - 7y + 4z = 8and passes through the point (5, 1, -4).

Determine if the following pair of lines is intersecting, parallel, or skew: $L_1(t) = \langle 1+2t, -2-t, 3+2t \rangle$ and $L_2(t) = \langle 1+t, -2+3t, 1+2t \rangle$.

L, goes in the direction of
$$<2,-1,2>$$
.
L2 goes in the direction of $<1,3,2>$. Not perablel.
If they intersect, then there is t and s such that
 $L_1(t) = L_2(s)$.
 $1+2t = 1+s \Rightarrow s = 2t$
 $-2-t = -2+3t \Rightarrow t = 0 \Rightarrow s = 0$
 $L_1(0) = <1,-2,3>$ for equal, so they do not intersect.
 $L_2(0) = <1,-2,1>$
Page 6 of 11 L_1 and L_2 are skew

Find a plane whose intercepts with the x, y, and z axes are 3, 7, and -2, respectively.

$$(3,0,0)$$
, $(0,7,0)$, and $(0,0,-2)$ are on the plane.
 $\Rightarrow < 3,-7,0>$ and $< 3,0,2>$ are in the plane.
 $\Rightarrow < 3,-7,0> \times < 3,0,2> = <-14,-6,21>$ is \bot to the plane.
Therefore, the plane is
 $(-14(x-3) - 6(y-0) + 21(2-0) = 0.$

Exercise 14

Find the intersection between the plane x + y = z and the plane 3x - 2y - 2z = 5.

The normal vectors for these planes are

$$< 1, 1, -1 > and < 3, -2, -2 >.$$
 The line
must be \bot to both these normal vectors
since the line lies in both planes. So,
we can find the direction of the line
by taking the cross product of these
hormal vectors:
 $< 1, 1, -17 \times < 3, -2, -27 = <-4, -1, -57.$
Nows find a point on the line by pluyging
 $2 = x + y$ into $3x - 2y - 2z = S$:
 $3x - 2y - 2(x + y) = S = 7 + 4y.$
Choose $y = 0$, then $x = 5$ and $z = 5$.

Find the intersection between the curve $\mathbf{r}(t) = \langle t^2, \cos(t), \sin(t) \rangle$ and the surface $3x^2 + 2y^2 + 2z^2 = 5$.

Plug
$$x=t^{2}$$
, $y=col(t^{2})$, $t=sin(t^{2})$ into the surface equation.
 $3(t^{2})^{2} + 2\cos^{2}(t) + 2\sin^{2}(t) = 5$
 $3t^{4} + 2 = 5$
 $3t^{4} = -3$
 $t^{4} = -1$
 $\Rightarrow t = \pm 1$, so $\vec{r}(t)$ intersects the surface at
 $\vec{r}(-1) = (1, cos(-1), sin(-1))$ and $\vec{r}(1) = (1, cos(1), sin(1))$

Exercise 18

Draw the projection of $\mathbf{r}(t) = \langle t^2, t, \cos(t) \rangle$ onto the xy and yz planes.

Find the line tangent to $\mathbf{r}(t) = \langle t^2, t, \cos(\pi t) \rangle$ at the point (4, -2, 1).

$$(4,-2,1) \quad corresponds + o \quad t = -2. \quad i.e., \quad \vec{r}(-2) = <4_{3}-2_{1}17.$$

$$\vec{r}^{2}(t) = <2t, \quad 1, \quad -\pi \sin(\pi t) >.$$

$$\vec{r}^{2}(-2) = <-4_{3}, \quad 1, \quad -\pi \sin(-2\pi) >.$$

$$= <-4_{3}, \quad 1, \quad 0 >.$$

$$L(t) = < 4_{1}-2, 17 + t < -4_{1}, 0>$$

Exercise 20

What is
$$\int_{1}^{2} (\sin(\pi t)\mathbf{i} + e^{2t}\mathbf{j} - 7\mathbf{k}) dt$$
?
 $\int ust integrate each component separately.$
 $\int_{1}^{2} \sin(\pi t) \vec{l} + e^{2t}\vec{j} - 7\vec{k} dt$
 $= \int_{1}^{2} \sin(\pi t) dt \vec{l} + \int_{1}^{2} e^{2t} dt \vec{j} - 7\int_{1}^{2} dt \vec{k}$
 $= -\frac{1}{\pi} \cos(\pi t) \Big|_{1}^{2} \vec{l} + \frac{1}{2} e^{2t} \Big|_{1}^{2} \vec{j} - 7\vec{k}$
 $= -\frac{1}{\pi} (\cos(2\pi) - \cos(\pi)) \vec{l} + \frac{1}{2} (e^{4} - e^{2}) \vec{j} - 7\vec{k}$
 $= -\frac{2}{\pi} \vec{l} + \frac{1}{2} (e^{4} - e^{2}) \vec{j} - 7\vec{k}$

Find the length of the curve $\mathbf{r}(t) = \langle \sin(\pi t), 3t, \cos(\pi t) \rangle$ from (0, 0, 1) to (0, 6, 1).

$$(0,0,1) \quad \text{corresponds } to \ t = 0.$$

$$(0,6,1) \quad \text{corresponds } to \ t = 2.$$

$$\vec{r}^{*}(t) = \langle T \cos(\pi t), 3, -T \sin(\pi t) \rangle$$

$$L = \int_{0}^{2} |\vec{r}'(t)| dt$$

$$= \int_{0}^{2} \int (T \cos(\pi t))^{2} + 3^{2} + (-\pi \sin(\pi t))^{2} dt$$

$$= \int_{0}^{2} \int \pi^{2} + 9 dt$$

$$= \left[2 \int \pi^{2} + 9\right].$$