14.1 - FUNCTIONS OF SEVERAL VARIABLES

Review

- (a) We plot a function of two variable above the *xy*-plane: z = f(x, y).
- (b) **Level curves** (also known as contour curves) are curves where the function f(x, y) takes a specific value. Level curves satisfy the equation
- (c) Level curves are the same thing as the z = c cross sections from Section 12.6.

Exercise 1

Give three real-life examples of functions of more than one variable.

Sketch the domain of the function $f(x, y) = x + \frac{\sqrt{2x - y}}{x + 1}$.

Exercise 3

Draw some level curves for the function $f(x,y) = ((x-2)^2 + y^2 + 1)^3$.

14.3 - PARTIAL DERIVATIVES

Review

- (a) Partial derivatives are denoted in many ways. For example, the partial derivative of f(x, y) with respect to x can be denoted:
- (b) To take the partial derivative with respect to a variable, pretend all other variables are ____
- (c) **Clairaut's theorem:** As long as the partial derivatives are continuous, it doesn't matter what order you take the derivatives in. For example,

$$f_{xxy}(x,y) =$$

(d) If z = f(x, y), then the partial derivative $f_x(a, b)$ can be **interpreted** as the slope of the cross section of f in the y = b plane. Or equivalently, as the slope of the graph of f in the x-direction at the point (a, b).

Exercise 4

Let $f(x,y) = e^{xy}\cos(xy)$. Compute the partial derivative $\frac{\partial^2 f}{\partial y \partial x}$.

The ideal gas law states that PV = mRT, where P is the pressure, V is the volume, m is the mass, R is a constant, and T is the temperature.

(a) Write the pressure of the gas as function of the volume and temperature.

(b) Compute
$$\frac{\partial P}{\partial T}$$
 and interpret it physically.

(c) Compute
$$\frac{\partial P}{\partial V}$$
 and interpret it physically.

Again, consider the ideal gas law PV = mRT.

(a) Is
$$\frac{\partial P}{\partial V} = \frac{1}{\left(\frac{\partial V}{\partial P}\right)}$$
?

(b) What do you think $\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}$ is equal to? Compute it and find out.

14.4 - TANGENT PLANES AND APPROXIMATIONS

Review

- (a) The formula for the **tangent plane** to the graph of f(x, y) at the point (a, b, c) is
- (b) The **total differential** dz for a function z = f(x, y) is defined as
- (c) Using the total differential, one can obtain **linear approximations** to the the function.

Exercise 7

Find the tangent plane to the graph of $f(x, y) = xy^3$ at (-3, 1, -3).

Find the total differential for the function $w = xe^z + x\sin(yz)$.

Exercise 9

Using the total differential, approximate $g(x, y, z) = xe^{z} + x\sin(yz)$ at (3.2, -0.9, 0.2).

14.5 - THE CHAIN RULE

Review

- (a) Procedure for using the chain rule with multivariable functions:
 - (i) Draw the tree diagram of the dependence of the variables.
 - (ii) Write the partial derivatives on the branches of the tree.
 - (iii) Add up all the branches that reach to the variable you want to take the derivative with respect to.

Exercise 10

z = g(x, y), $x = \tan(t)$, $y = t^3$. Find $\frac{\partial g}{\partial t}$.

Exercise 11

z = f(x, y), $x = st^2$, $y = \cos(s)$. Find $\frac{\partial f}{\partial s}$.

$$w = \cos(xyz)$$
, $x = st$, $y = \frac{s}{t}$, $z = e^{uv}$, $u = t\cos(s)$, $v = st^2$. Find $\frac{\partial w}{\partial t}$.