EXAM 2 REVIEW

Exercise 1

Find the domain and range of the following functions.
(a) $f(x, y)=\sqrt{x^{2}+y^{2}-9}$
(b) $g(x, y)=\sqrt{y^{2}-4}+\sqrt[4]{y+x^{2}}$

Exercise 2

Draw some level curves of the following functions. Draw the gradient at several points on the graph of level curves.
(a) $f(x, y)=\ln (x y)$
(b) $g(x, y)=\frac{y}{x^{2}+y^{2}}$

Exercise 3

The average energy E (in kcal) needed for a lizard to walk or run a distance of 1 km has been modeled by the equation

$$
E(m, v)=\frac{8}{3} m^{2 / 3}+\frac{7 m^{3 / 4}}{2 v}
$$

where m is the body mass of the lizard (in grams) and v is the speed (in km / h). Compute $E_{m}(400,8)$ and $E_{v}(400,8)$ and interpret your results.

Exercise 4

In a study of frost depth, it was found that the temperature T at time t (in days) at a depth x (in feet) can be modeled by the function

$$
T(x, t)=T_{0}+T_{1} e^{-\lambda x} \sin \left(\frac{2 \pi}{365}-\lambda x\right)
$$

where λ, T_{0}, and T_{1} are some constants.
(a) Compute $\frac{\partial T}{\partial x}$. What is its physical significance?
(b) Compute $\frac{\partial T}{\partial t}$. What is its physical significance?

Exercise 5

Find the tangent plane to $z=\frac{x}{y^{2}}$ at the point $(-4,2,-1)$.

Exercise 6

Use differentials to estimate the amount of metal in a closed cylindrical can that is 12 cm high and 8 cm in diameter if the tin is 0.04 cm thick.

Exercise 7

Use differentials to estimate the value of $\ln \left((1.1)^{3}+(1.2)^{2}\right)$.

Exercise 8

Recall the ideal gas law: $P V=n R T .\left(R=8.31 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{~K} \cdot \mathrm{~mol}}\right)$ Suppose we have a closed box of 2 moles of a gas. If we increase the temperature according to $T(t)=\left(200+t^{2}\right) \mathrm{K}$ and change the volume according to $V(t)=(10-t) \mathrm{m}^{3}$, how fast is the pressure changing at time $t=3$?

Exercise 9

The relative humidity can be expressed as the formula

$$
R(P, T, w)=\frac{w}{a+b P e^{\frac{T}{1+T}}}
$$

where P is the pressure, T is the temperature, and w is the amount of water in the air. The heat index is a function of R and T. Find an expression for how fast the heat index changes as the temperature is increased in a room of volume V with a fixed amount of water in the air.

Exercise 10

Compute the gradient of $f(x, y, z)=x^{2} \sin (y z)+2 y^{2} z$.

Exercise 11

Compute the directional derivative of $g(x, y)=e^{x y^{2}}$ at the point $(0,2)$ in the direction $\langle-4,3\rangle$.

Exercise 12

At what point on the ellipsoid $x^{2}+y^{2}+2 z^{2}=1$ is the tangent plane parallel to the plane $x+2 y+z=1$?

Exercise 13

The temperature at a point (x, y, z) is given by

$$
T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}
$$

where T is measured in ${ }^{\circ} \mathrm{C}$ and x, y, z are measured in meters.
(a) Find the rate of change of temperature at the point $P(2,-1,2)$ in the direction toward the point $(3,-3,3)$.
(b) In which direction does the temperature increase fastest at P ?
(c) Find the maximum rate of increase at P.

Exercise 14

Find the shortest distance from $(2,0,-3)$ to the plane $x+y+z=1$.

Exercise 15

Find the absolute min and max of $g(x, y)=x y^{2}$ on the region $R=\left\{(x, y): x \geq 0, x^{2}+y^{2} \leq 3\right\}$.

Exercise 16

Using Lagrange multipliers, find the max and min of $f(x, y)=2 x+2 y+z$ subject to the constraint $x^{2}+y^{2}+z^{2}=9$.

