EXAM 2 REVIEW

Exercise 1

Find the domain and range of the following functions.

(a) $f(x,y) = \sqrt{x^2 + y^2 - 9}$

(b) $g(x,y) = \sqrt{y^2 - 4} + \sqrt[4]{y + x^2}$

Draw some level curves of the following functions. Draw the gradient at several points on the graph of level curves.

(a) $f(x,y) = \ln(xy)$

(b) $g(x,y) = \frac{y}{x^2 + y^2}$

The average energy E (in kcal) needed for a lizard to walk or run a distance of 1km has been modeled by the equation

$$E(m,v) = \frac{8}{3}m^{2/3} + \frac{7m^{3/4}}{2v},$$

where *m* is the body mass of the lizard (in grams) and *v* is the speed (in km/h). Compute $E_m(400, 8)$ and $E_v(400, 8)$ and interpret your results.

Exercise 4

In a study of frost depth, it was found that the temperature T at time t (in days) at a depth x (in feet) can be modeled by the function

$$T(x,t) = T_0 + T_1 e^{-\lambda x} \sin(\frac{2\pi}{365} - \lambda x),$$

where λ , T_0 , and T_1 are some constants.

(a) Compute $\frac{\partial T}{\partial x}$. What is its physical significance?

(b) Compute $\frac{\partial T}{\partial t}$. What is its physical significance?

Find the tangent plane to $z = \frac{x}{y^2}$ at the point (-4, 2, -1).

Exercise 6

Use differentials to estimate the amount of metal in a closed cylindrical can that is 12cm high and 8cm in diameter if the tin is 0.04cm thick.

Use differentials to estimate the value of $\ln((1.1)^3 + (1.2)^2)$.

Exercise 8

Recall the ideal gas law: PV = nRT. $(R = 8.31 \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2 \cdot \text{K} \cdot \text{mol}})$ Suppose we have a closed box of 2 moles of a gas. If we increase the temperature according to $T(t) = (200 + t^2)$ K and change the volume according to $V(t) = (10 - t) \text{ m}^3$, how fast is the pressure changing at time t = 3?

The relative humidity can be expressed as the formula

 $R(P,T,w) = \frac{w}{a+bPe^{\frac{T}{1+T}}},$

where P is the pressure, T is the temperature, and w is the amount of water in the air. The heat index is a function of R and T. Find an expression for how fast the heat index changes as the temperature is increased in a room of volume V with a fixed amount of water in the air.

Exercise 10

Compute the gradient of $f(x, y, z) = x^2 \sin(yz) + 2y^2 z$.

Compute the directional derivative of $g(x, y) = e^{xy^2}$ at the point (0, 2) in the direction $\langle -4, 3 \rangle$.

Exercise 12

At what point on the ellipsoid $x^2 + y^2 + 2z^2 = 1$ is the tangent plane parallel to the plane x + 2y + z = 1?

The temperature at a point (x, y, z) is given by

 $T(x, y, z) = 200e^{-x^2 - 3y^2 - 9z^2},$

where T is measured in °C and x, y, z are measured in meters.

(a) Find the rate of change of temperature at the point P(2, -1, 2) in the direction toward the point (3, -3, 3).

(b) In which direction does the temperature increase fastest at *P*?

(c) Find the maximum rate of increase at *P*.

Find the shortest distance from (2, 0, -3) to the plane x + y + z = 1.

Find the absolute min and max of $g(x, y) = xy^2$ on the region $R = \{(x, y) : x \ge 0, x^2 + y^2 \le 3\}$.

Using Lagrange multipliers, find the max and min of f(x, y) = 2x + 2y + z subject to the constraint $x^2 + y^2 + z^2 = 9$.