EXAM 2 REVIEW

Exercise 1
Find the domain and range of the following functions.
(a) $f(x, y)=\sqrt{x^{2}+y^{2}-9}$

$$
\begin{aligned}
& x^{2}+y^{2}-9 \geq 0 \Rightarrow x^{2}+y^{2} \geq 9 \\
& \text { range: }[0, \infty) .
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { (b) } g(x, y)=\sqrt{y^{2}-4}+\sqrt[4]{y+x^{2}} \\
y^{2}-y \geq 0 \Rightarrow y^{2} \geq 4 \\
\Rightarrow y \geq 2 \text { on } y \leq-2
\end{array}\right] \begin{aligned}
& y+x^{2} \geq 0 \Rightarrow y \geq-x^{2} \\
& \text { range: }[0, \infty) .
\end{aligned}
$$

Exercise 2
Draw some level curves of the following functions. Draw the gradient at several points on the graph of level curves.
(a) $f(x, y)=\ln (x y)$

$$
\begin{gathered}
\ln (x y)=c \\
x y=e^{c} \\
y=\frac{e^{c}}{x}
\end{gathered}
$$

(b) $g(x, y)=\frac{y}{x^{2}+y^{2}}$

$$
\begin{aligned}
& \frac{y}{x^{2}+y^{2}}=c \\
& \frac{1}{c} y=x^{2}+y^{2} \\
& x^{2}+y^{2}-\frac{1}{c} y+\frac{1}{4 c^{2}}= \\
& x^{2}+\left(y-\frac{1}{2 c}\right)^{2}=\frac{1}{4 c^{2}}=\left(\frac{1}{2 c}\right)^{2} \\
& \operatorname{cen} \operatorname{ten}:\left(0, \frac{1}{2 c}\right)
\end{aligned}
$$

Exercise 3
The average energy E (in kcal) needed for a lizard to walk or run a distance of 1 km has been modeled by the equation

$$
E(m, v)=\frac{8}{3} m^{2 / 3}+\frac{7 m^{3 / 4}}{2 v}
$$

where m is the body mass of the lizard (in grams) and v is the speed (in km / h). Compute $E_{m}(400,8)$ and $E_{v}(400,8)$ and interpret your results.

$$
\begin{array}{ll}
E_{m}(m, v)=\frac{16}{9} m^{-1 / 3 / s}+\frac{21}{8} \frac{m^{-1 / 4}}{v} & E_{v}(m, v)=\frac{-7 m^{3 / 4}}{v^{2}} \\
E_{n}(400,8)=\frac{16}{9} 400^{-1 / 3}+\frac{21}{8} \frac{800^{-1 / 4}}{8} & E_{v}(m, v)=\frac{-7(400)^{3 / 4}}{64}
\end{array}
$$

how much the required ewergy
increases as the mass increases if the speed stays the same.
Exercise 4 (heavier = more energy)
how much the requined energy changes as the speed changes if weight $(\text { faster }=1 \text { less energy })^{\text {sta }}$

In a study of frost depth, it was found that the temperature T at time t (in days) at a depth x (in feet) can be modeled by the function

$$
T(x, t)=T_{0}+T_{1} e^{-\lambda x} \sin \left(\frac{2 \pi}{365} t-\lambda x\right),
$$

where λ, T_{0}, and T_{1} are some constants.
(a) Compute $\frac{\partial T}{\partial x}$. What is its physical significance?

$$
\frac{\partial T}{\partial x}=-\lambda T_{1} e^{-\lambda x} \sin \left(\frac{2 \pi}{365} t-\lambda x\right)-\lambda T_{1} e^{-\lambda x} \cos \left(\frac{2 \pi}{365} t-\lambda x\right)
$$

how fast the temperature changes as you change the depth while keeping the day the same.
(b) Compute $\frac{\partial T}{\partial t}$. What is its physical significance?

$$
\frac{\partial T}{\partial t}=\frac{2 \pi}{365} T_{1} e^{-\lambda x} \cos \left(\frac{2 \pi}{365} t-\lambda x\right)
$$

how fast the temperature changes at a specific depth as time passes.

Exercise 5
Find the tangent plane to $z=\frac{x}{y^{2}}$ at the point $(-4,2,-1)$.

$$
\begin{aligned}
& f_{x}(x, y)=\frac{1}{y^{2}} \quad f_{y}(x, y)=\frac{-2 x}{y^{3}} \\
& f_{x}(-4,2)=\frac{1}{4} \quad f_{y}(-4,2)=\frac{-2(-4)}{8}=1 \\
& z=f(-4,2)+f_{x}(-4,2)(x+4)+f_{y}(-4,2)(y-2) \\
& z=-1+\frac{1}{4}(x+4)+y-2
\end{aligned}
$$

Exercise 6
Use differentials to estimate the amount of metal in a closed cylindrical can that is 12 cm high and 8 cm in diameter if the tin is 0.04 cm thick.

$$
\begin{aligned}
& V_{c y l i n h}=\pi r^{2} h \\
& \begin{aligned}
d V & =2 \pi r h d r+\pi r^{2} d h \\
& =2 \pi(4)(12)(0.04)+\pi(4)^{2}(0.08)
\end{aligned}
\end{aligned}
$$

Exercise 7
Use differentials to estimate the value of $\ln \left((1.1)^{3}+(1.2)^{2}\right)$.

$$
\begin{gathered}
f(x, y)=\left(n\left(x^{3}+y^{2}\right) f(1,1)=(n(2)\right. \\
d f=\frac{3 x^{2}}{x^{3}+y^{2}} d x+\frac{2 y}{x^{3}+y^{2}} d y \\
=\frac{3}{2}(0.1)+\frac{2}{2}(0.2)=0.15+0.2=0.35 \\
f\left((1.1)^{3}+(1.2)^{2}\right) \approx \ln (2)+0.35 \\
f(2)
\end{gathered}
$$

Exercise 8
Recall the ideal gas law: $P V=n R T .\left(R=8.31 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{~K} \cdot \mathrm{~mol}}\right)$ Suppose we have a closed box of 2 moles of a gas. If we increase the temperature according to $T(t)=\left(200+t^{2}\right) \mathrm{K}$ and change the volume according to $V(t)=(10-t) \mathrm{m}^{3}$, how fast is the pressure changing at time $t=3$?

$$
\begin{aligned}
& P=\frac{n R T}{V} \\
& \frac{d P}{d t}=\frac{\partial P}{\partial V} \frac{d V}{d t}+\frac{\partial P}{\partial T} \frac{d T}{d t} \\
& =\frac{-n R T}{V^{2}}(-1)+\frac{n R}{V}(2 t) \\
& \left.\frac{d P}{d t}\right|_{t=2}=\frac{t(2)(8.31)}{49}+\frac{(2)(8.31)}{7}(2)(3) \\
& \text { At } t=3 \text { : } \\
& V=7 \mathrm{~m}^{3} \\
& T=209 \mathrm{~K}
\end{aligned}
$$

Exercise 9
The relative humidity can be expressed as the formula Assume idea gas.

$$
R(P, T, w)=\frac{w}{a+b P e e^{\frac{T}{1+T}}}, \quad P=\frac{n R T}{V} .
$$

where P is the pressure, T is the temperature, and w is the amount of water in the air. The heat index is a function of R and T. Find an expression for how fast the heat index changes as the temperature is increased in a room of volume V with a fixed amount of water in the air.

$$
\frac{d H}{d T}=\frac{\partial H}{\partial R}\left(\frac{\partial R}{\partial P} \frac{d P}{d t}+\frac{\partial R}{\partial T}\right)+\frac{\partial H}{\partial T}
$$

Exercise 10
Compute the gradient of $f(x, y, z)=x^{2} \sin (y z)+2 y^{2} z$.

$$
\nabla f(x, y, z)=\left(2 x \sin (y z), x^{2} z \cos (y z)+4 y z, x^{2} y \cos (y z)+2 y^{2}\right)
$$

Exercise 11
Compute the directional derivative of $g(x, y)=e^{x y^{2}}$ at the point $(0,2)$ in the direction $\langle-4,3\rangle$.

$$
\begin{aligned}
& \nabla g(x, y)=\left\langle y^{2} e^{x y^{2}}, 2 x y e^{x y^{2}}\right\rangle \\
& \begin{aligned}
\nabla^{u}=\frac{1}{\sqrt{(-4)^{2}+3^{2}}}\langle-4,3\rangle=\left\langle\frac{-4}{5}, \frac{3}{5}\right\rangle \\
\begin{aligned}
D_{\vec{u}} g(0,2) & =\nabla_{q}(0,2) \cdot \vec{u} \\
& \left.=\langle 4,0\rangle \cdot<\frac{4}{5}, \frac{3}{5}\right\rangle \\
& =-\frac{16}{5}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Exercise 12
At what point on the ellipsoid $x^{2}+y^{2}+2 z^{2}=1$ is the tangent plane parallel to the plane $x+2 y+z=1$?
Thick of $\underbrace{x^{2}+y^{2}+2 z^{2}}_{j(x, y, z)}=1$ as a level

$$
\vec{n}=\langle 1,2,1\rangle .
$$

surface. Then, ∇_{g} is 1
to this level surface.

$$
\begin{aligned}
& \nabla_{g(x, y, z)}=\langle 2 x, 2 y, 4 z\rangle=c\langle 1,2,1\rangle \\
& \Rightarrow \begin{array}{l}
2 x=c \\
2 y=2 c
\end{array} \Rightarrow x=2 z \quad \Rightarrow(2 z)^{2}+(4 z)^{2}+2 z^{2}=1 \\
& \left.\begin{array}{l}
2 y=2 c \\
4 z=c
\end{array}\right\} \begin{array}{l}
x=2 z \\
y=4 z
\end{array} \quad\left\{\begin{array}{l}
2 z z^{2}=1 \\
22 z^{2}+1
\end{array}\right. \\
& 4 z=c \Longrightarrow y=4 z \\
& x^{2}+y^{2}+2 z^{2}=1 \\
& \text { Page } 7 \text { of } 11 \\
& \left(\frac{-2}{\sqrt{22}}, \frac{-4}{\sqrt{22}}, \frac{-1}{\sqrt{22}}\right) \text { and }\left(\frac{2}{\sqrt{22}}, \frac{4}{\sqrt{22}}, \frac{1}{\sqrt{22}}\right)
\end{aligned}
$$

Exercise 13
The temperature at a point (x, y, z) is given by

$$
T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}
$$

where T is measured in ${ }^{\circ} \mathrm{C}$ and x, y, z are measured in meters.
(a) Find the rate of change of temperature at the point $P(2,-1,2)$ in the direction toward the point

$$
\begin{aligned}
& Q^{(3,-3,3) .} \\
& \overrightarrow{P Q}=\langle 1,-2,1\rangle \\
& \vec{u}=\frac{1}{|\overrightarrow{P Q}|} \overrightarrow{P Q}=\left\langle\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle \\
& \nabla T(x, y, z)=\left\langle-400 x e^{-x^{2}-3 y^{2}-9 z^{2}},-1200 y e^{-x^{2}-3 y^{2}-9 z^{2}},-3600 z e^{-x^{2}-3 y^{2}-4 z^{2}}\right\rangle \\
& \nabla T(2,-1,2)=\left\langle-800 e^{-43}, 1200 e^{-43},-7200 e^{-43}\right\rangle \\
& D_{\vec{u}} T(2,-1,2)=\frac{e^{-43}}{\sqrt{6}}(-800-2400-7200) .
\end{aligned}
$$

(b) In which direction does the temperature increase fastest at P ?
in the l direction of the gradient:

$$
\left\langle-800 e^{-43}, 1200 e^{-43},-7200 e^{-43}\right\rangle
$$

(c) Find the maximum rate of increase at P.
magnitude of the gradient:

$$
\sqrt{\left(-800 e^{-4} \cdot\right)^{2}+\left(1200 e^{-10}\right)^{2}+\left(-7200 e^{-10}\right)^{2}}
$$

Exercise 14

$$
g(x, y, z)
$$

Find the shortest distance from $(2,0,-3)$ to the plane $x+y+z=1$.
distance squared from (x, y, z) to $(2,0,-3)$ is

$$
\begin{aligned}
& f(x, y, z)=(x-2)^{2}+y^{2}+(x+3)^{2} . \\
& \nabla f=\lambda \nabla g \\
& \langle 2(x-2), 2 y, 2(z+3)\rangle=\lambda\langle 1,1,1\rangle \\
& 2 x-4=\lambda \text { solve these for } x, y, z \text {. } \\
& \begin{aligned}
2 y & =\lambda \\
2 z+6 & =\lambda
\end{aligned} \quad 2 x-4=2 y \quad \Rightarrow x=y+2 \\
& 2 z+6=2 y \Rightarrow z=y-3 \\
& y+2+y+y-3=1 \\
& \Rightarrow 3 y=2 \Rightarrow y=\frac{2}{3} \Rightarrow \begin{aligned}
& x \\
&=2+\frac{2}{3} \\
& z=\frac{2}{3}-3
\end{aligned} \\
& \text { Shortest distance: } \sqrt{\left(\left(2+\frac{2}{3}\right)-2\right)^{2}+\left(\frac{2}{3}\right)^{2}+\left(\left(\frac{2}{3}-3\right)+3\right)^{2}} \\
& =\sqrt{3\left(\frac{4}{9}\right)}=\frac{2}{\sqrt{3}}
\end{aligned}
$$

Exercise 15
Find the absolute min and max of $g(x, y)=x y^{2}$ on the region $R=\left\{(x, y): x \geq 0, x^{2}+y^{2} \leq 3\right\}$.
look for critical points:

$$
\begin{aligned}
& g_{x}(x, y)=y^{2}=0 \Rightarrow y=0 \\
& g_{y}(x, y)=2 x y=0 \Rightarrow x \text { is anything } \\
& g(x, 0)=0 .
\end{aligned}
$$

Side S, : $x=0,-\sqrt{3} \leq y \leq \sqrt{3}$.

$$
\begin{aligned}
& g(0, y)=0 . \\
& \text { Side } S_{2}: x=\sqrt{3-y^{2}} \\
& \text { Side } S_{2}: x=\sqrt{3-y^{2}} \\
& \text { abs min: } 0 \\
& \text { abs max: } 2 \\
& g\left(\sqrt{3-y^{2}}, y\right)=\sqrt{3-y^{2}} y^{2} \\
& \frac{d}{d y} g\left(\sqrt{3-y^{2}}, y\right)=2 y \sqrt{3-y^{2}}-y \frac{y^{2}}{\sqrt{3-y^{2}}}=0 \\
& \Rightarrow 2 \sqrt{3-y^{2}}=\frac{y^{2}}{\sqrt{3-y^{2}}} \\
& \Rightarrow 2\left(3-y^{2}\right)=y^{2} \\
& g\left(\sqrt{3-(\sqrt{2})^{2}},-\sqrt{2}\right)=2 \\
& \Rightarrow 6-2 y^{2}=y^{2} \Rightarrow y^{2}=2 \\
& g\left(\sqrt{3-(\sqrt{2})^{2}}, \sqrt{2}\right)=2 \\
& \text { Page } 10 \text { of } 11 \\
& \Rightarrow y= \pm \sqrt{2}
\end{aligned}
$$

Exercise 16

Using Lagrange multipliers, find the max and min of $f(x, y)=2 x+2 y+z$ subject to the constraint $\underbrace{x^{2}+y^{2}+z^{2}}=9$.
$\jmath(x, y, z)$

$$
\begin{aligned}
& \nabla f=\lambda \nabla g \\
& \langle 2,2,1\rangle=\lambda\langle 2 x, 2 y, 2 z\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
\left.\begin{array}{ll}
2=2 d x \\
2=2 d y & \text { Solve for } x, y, z . \\
1 & 2 d z \\
x^{2}+y^{2}+z^{2}=9 &
\end{array}\right) x=y \\
& 2 z=x \Rightarrow y=2 z \\
& (2 z)^{2}+(2 z)^{2}+z^{2}=9
\end{array}
$$

$$
9 z^{2}=9
$$

$$
\Rightarrow z= \pm 1
$$

$$
z=-1!\quad z=1:
$$

$$
x=-2 \quad x=2
$$

$$
y=-2 \quad y=2
$$

$$
f(-2,-2,-1)=2(-2)+2(-2)-1=-9
$$

$$
f(2,2,1)=2(2)+2(2)+1=9
$$

$$
\begin{aligned}
& m a x: 9 \\
& m \text { in: }-9
\end{aligned}
$$

