## 15.1 - DOUBLE INTEGRALS OVER RECTANGLES

## Review

(a) We can take double integrals by using an iterated integral. If $D=\{(x, y): a \leq x \leq b, c \leq y \leq d\}$, then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} y \mathrm{~d} x .
$$

(b) The order of integration can make the problem much easier or harder.
(c) The double integral of $f$ gives the volume under the surface $f(x, y)$.

## Exercise 1

Compute the following double integrals.
(a) $\int_{0}^{1} \int_{0}^{1}(x+y)^{2} \mathrm{~d} x \mathrm{~d} y$
(b) $\int_{1}^{3} \int_{1}^{5} \frac{\ln (y)}{x y} \mathrm{~d} y \mathrm{~d} x$
(c) $\iint_{R} \frac{\tan \theta}{\sqrt{1-t^{2}}} \mathrm{~d} A$, where $R=\left\{(\theta, t): 0 \leq \theta \leq \pi / 3,0 \leq t \leq \frac{1}{2}\right\}$.

## Exercise 2

Find the volume of a solid that lies under the hyperbolic paraboloid $z=3 y^{2}-x^{2}+2$ and above the rectangle $R=[-1,1] \times[1,2]$.

## Exercise 3

Find the volume of the solid in the first octant bounded by the cylinder $z=16-x^{2}$ and the plane $y=5$.

## 15.2 - DOUBLE INTEGRALS OVER GENERAL REGIONS

## Review

(a) If $D=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$, then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

(b) If $D=\left\{(x, y): g_{1}(y) \leq x \leq g_{2}(y), a \leq y \leq b\right\}$, then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{g_{1}(y)}^{g_{2}(y)} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

(c) The order of integration can make the problem much easier or harder.

## Exercise 4

Evaluate the following double integrals.
(a) $\iint_{D} y \sqrt{x^{2}-y^{2}} \mathrm{~d} A$, where $D=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq x\}$.
(b) $\iint_{D} y^{2} e^{x y} \mathrm{~d} A$, where $D$ is the region bounded by $y=z, y=4$, and $x=0$.
(c) $\iint_{D} x \cos (y) \mathrm{d} A$, where $D$ is bounded by $y=0, y=x^{2}$, and $x=1$.

## Exercise 5

Find the volume under the surface $z=1+x^{2} y^{2}$ and above the region enclosed by $x=y^{2}$ and $x=4$.

## Exercise 6

Find the volume of the region bounded by the planes $z=x, y=x, x+y=2$ and $z=0$.

## Exercise 7

Find the volume of the region bounded by the cylinders $z=x^{2}$ and $y=x^{2}$ and the planes $z=0$ and $y=4$.

## Exercise 8

Switch the order of integration in the following.
(a) $\int_{0}^{2} \int_{x^{2}}^{4} f(x, y) \mathrm{d} y \mathrm{~d} x$
(b) $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \mathrm{~d} x \mathrm{~d} y$

## Exercise 9

Evaluate the following.
(a) $\int_{0}^{1} \int_{x^{2}}^{1} \sqrt{y} \sin (y) \mathrm{d} y \mathrm{~d} x$
(b) $\int_{0}^{2} \int_{y / 2}^{1} y \cos \left(x^{3}-1\right) \mathrm{d} x \mathrm{~d} y$

## 15.3 - DOUBLE INTEGRALS IN POLAR COORDS

## Review

(a) If $D=\{(r, \theta): a \leq r \leq b, c \leq \theta \leq d\}$, then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{c}^{d} f(r \cos \theta, r \sin \theta) r \mathrm{~d} \theta \mathrm{~d} r
$$

(b) If $D=\left\{(r, \theta): g_{1}(\theta) \leq r \leq g_{2}(\theta), a \leq r \leq b\right\}$, then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta .
$$

(c) If $D=\left\{(r, \theta): a \leq r \leq b, g_{1}(r) \leq \theta \leq g_{2}(r)\right\}$, then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{g_{1}(r)}^{g_{2}(r)} f(r \cos \theta, r \sin \theta) r \mathrm{~d} \theta \mathrm{~d} r .
$$

(d) The order of integration can make the problem much easier or harder.

## Exercise 10

Find the volume under the paraboloid $z=1+2 x^{2}+2 y^{2}$ and the plane $z=7$ in the first octant.

## Exercise 11

Find the volume above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=1$.

## Exercise 12

Find the volume bounded by the paraboloids $z=6-x^{2}-y^{2}$ and $z=2 x^{2}+2 y^{2}$.

## Exercise 13

Compute $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} \mathrm{~d} y \mathrm{~d} x$.

