15.1 – DOUBLE INTEGRALS OVER RECTANGLES

Review

(a) We can take double integrals by using an iterated integral. If $D = \{(x, y) : a \le x \le b, c \le y \le d\}$, then

$$\iint_D f(x,y) \, \mathrm{d}A = \int_a^b \int_c^d f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_c^d \int_a^b f(x,y) \, \mathrm{d}y \, \mathrm{d}x.$$

- (b) The order of integration can make the problem much easier or harder.
- (c) The double integral of f gives the volume under the surface f(x, y).

Exercise 1

Compute the following double integrals.

(a)
$$\int_0^1 \int_0^1 (x+y)^2 \, \mathrm{d}x \, \mathrm{d}y$$

(b)
$$\int_{1}^{3} \int_{1}^{5} \frac{\ln(y)}{xy} \, \mathrm{d}y \, \mathrm{d}x$$

(c)
$$\iint_R \frac{\tan\theta}{\sqrt{1-t^2}} \, \mathrm{d}A$$
, where $R = \{(\theta, t) : 0 \le \theta \le \pi/3, 0 \le t \le \frac{1}{2}\}.$

Find the volume of a solid that lies under the hyperbolic paraboloid $z = 3y^2 - x^2 + 2$ and above the rectangle $R = [-1, 1] \times [1, 2]$.

Exercise 3

Find the volume of the solid in the first octant bounded by the cylinder $z = 16 - x^2$ and the plane y = 5.

15.2 - DOUBLE INTEGRALS OVER GENERAL REGIONS

Review

(a) If $D = \{(x, y) : a \le x \le b, g_1(x) \le y \le g_2(x)\}$, then

$$\iint_D f(x,y) \,\mathrm{d}A = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \,\mathrm{d}y \,\mathrm{d}x.$$

(b) If $D = \{(x, y) : g_1(y) \le x \le g_2(y), a \le y \le b\}$, then

$$\iint_D f(x,y) \, \mathrm{d}A = \int_a^b \int_{g_1(y)}^{g_2(y)} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

(c) The order of integration can make the problem much easier or harder.

Exercise 4

Evaluate the following double integrals.

(a)
$$\iint_D y\sqrt{x^2 - y^2} \, \mathrm{d}A$$
, where $D = \{(x, y) : 0 \le x \le 2, 0 \le y \le x\}$.

(b)
$$\iint_D y^2 e^{xy} dA$$
, where D is the region bounded by $y = z$, $y = 4$, and $x = 0$.

(c)
$$\iint_D x \cos(y) \, dA$$
, where D is bounded by $y = 0$, $y = x^2$, and $x = 1$.

Find the volume under the surface $z = 1 + x^2y^2$ and above the region enclosed by $x = y^2$ and x = 4.

Exercise 6

Find the volume of the region bounded by the planes z = x, y = x, x + y = 2 and z = 0.

Find the volume of the region bounded by the cylinders $z = x^2$ and $y = x^2$ and the planes z = 0 and y = 4.

Exercise 8

Switch the order of integration in the following.

(a)
$$\int_0^2 \int_{x^2}^4 f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

(b)
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \mathrm{d}x \,\mathrm{d}y$$

Evaluate the following.

(a)
$$\int_0^1 \int_{x^2}^1 \sqrt{y} \sin(y) \, \mathrm{d}y \, \mathrm{d}x$$

(b)
$$\int_0^2 \int_{y/2}^1 y \cos(x^3 - 1) \, \mathrm{d}x \, \mathrm{d}y$$

15.3 - DOUBLE INTEGRALS IN POLAR COORDS

Review

(a) If
$$D = \{(r, \theta) : a \le r \le b, c \le \theta \le d\}$$
, then

$$\iint_D f(x,y) \, \mathrm{d}A = \int_a^b \int_c^d f(r\cos\theta, r\sin\theta) \, r \, \mathrm{d}\theta \, \mathrm{d}r.$$

(b) If $D = \{(r, \theta) : g_1(\theta) \le r \le g_2(\theta), a \le r \le b\}$, then

$$\iint_D f(x,y) \, \mathrm{d}A = \int_a^b \int_{g_1(\theta)}^{g_2(\theta)} f(r\cos\theta, r\sin\theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta.$$

(c) If $D = \{(r, \theta) : a \leq r \leq b, g_1(r) \leq \theta \leq g_2(r)\}$, then

$$\iint_D f(x,y) \, \mathrm{d}A = \int_a^b \int_{g_1(r)}^{g_2(r)} f(r\cos\theta, r\sin\theta) \, r \, \mathrm{d}\theta \, \mathrm{d}r.$$

(d) The order of integration can make the problem much easier or harder.

Find the volume under the paraboloid $z = 1 + 2x^2 + 2y^2$ and the plane z = 7 in the first octant.

Exercise 11

Find the volume above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$.

Find the volume bounded by the paraboloids $z = 6 - x^2 - y^2$ and $z = 2x^2 + 2y^2$.

Exercise 13

Compute $\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} \, \mathrm{d}y \, \mathrm{d}x.$