15.6 - TRIPLE INTEGRALS

Review

(a) We can take triple integrals by using an iterated integral. If $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y) \mathrm{d} z \mathrm{~d} y \mathrm{~d} x .
$$

(b) The order of integration can make the problem much easier or harder.
(c) The triple integral of 1 gives you the volume of the region of integration.

Exercise 1

Compute the following triple integrals.
(a) $\int_{0}^{3} \int_{0}^{x} \int_{x-y}^{x+y} y \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x$
(b) $\int_{0}^{1} \int_{y}^{1} \int_{0}^{x y} e^{z / y} \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y$
(c) $\iiint_{E} \sin (y) \mathrm{d} V$, where E is the region below the plane $z=x$ and above the triangular region with vertices $(0,0,0),(\pi, 0,0)$, and $(0, \pi, 0)$.
(d) $\iiint_{E} x z \mathrm{~d} V$, where E is the solid tetrahedron with vertices $(0,0,0),(1,0,1),(0,1,1)$, and $(0,0,1)$.

Exercise 2

Find the volume of the solid enclosed by the paraboloids $x=y^{2}+z^{2}$ and $x=4-y^{2}-z^{2}$.

Exercise 3

Find the volume of the solid enclosed by the cylinder $x^{2}+z^{2}=4$ and the planes $y=-1$ and $y+z=4$.

Exercise 4

Write the following integral in a few different orders of integration: $\int_{0}^{1} \int_{y}^{1} \int_{0}^{y} f(x, y, z) \mathrm{d} z \mathrm{~d} x \mathrm{~d} y$

15.2 - TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

Review

(a) Cylindrical coordinates are "polar coordinates plus a z direction."
(b) Conversion from rectangular to/from cylindrical coordinates:

$$
\begin{aligned}
x & =r \cos \theta & y & =r \sin \theta \\
r^{2} & =x^{2}+y^{2} & \tan \theta & =\frac{y}{x}
\end{aligned}
$$

Exercise 5

Convert the following points from rectangular to cylindrical coordinates.
(a) $(x, y, z)=(-\sqrt{2}, \sqrt{2}, 1)$.
(b) $(x, y, z)=(2,2,2)$.

Exercise 6

Convert $(r, \theta, z)=(2, \pi / 6,-1)$ to rectangular coordinates.

Exercise 7

Graph $r=2$.

Exercise 8

Graph $\theta=\pi / 3$.

Exercise 9

Sketch the solid $r^{2} \leq z \leq 8-r^{2}$.

Exercise 10

Sketch the solid $0 \leq \theta \leq \pi / 2, r \leq z \leq 2$.

Exercise 11

For the following, set up the integral in cylindrical coordinates, but do not evaluate.
(a) $\iiint_{E}(x+y+z) \mathrm{d} V$, where E is the solid in the first octant under the paraboloid $z=4-x^{2}-y^{2}$.
(b) $\iiint_{E}(x-y) \mathrm{d} V$, where E is the solid that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=16$, above the $x y$-plane, and below the plane $z=y+4$.

