## 15.6 - TRIPLE INTEGRALS

## Review

(a) We can take triple integrals by using an iterated integral. If $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y) \mathrm{d} z \mathrm{~d} y \mathrm{~d} x .
$$

(b) The order of integration can make the problem much easier or harder.
(c) The triple integral of 1 gives you the volume of the region of integration.

## Exercise 1

Compute the following triple integrals.
(a) $\int_{0}^{3} \int_{0}^{x} \int_{x-y}^{x+y} y \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x$
$=\left.\int_{0}^{3} \int_{0}^{x} y z\right|_{z=x-y} ^{z=x * y} d y d x$
$=\int_{0}^{3} \int_{0}^{x}(y(x+y)-y(x-y)) d y d x$
$=\int_{0}^{3} \int_{0}^{x} 2 y^{2} d y d x$
$=\left.\int_{0}^{3} \frac{2}{3} y^{3}\right|_{y=0} ^{y=x} d x$
$=\int_{0}^{3} \frac{2}{3} x^{3} d x$
$=\left.\frac{2}{12} x^{4}\right|_{0} ^{3}=\frac{2}{12} 3^{4}=\frac{27}{2}$

$$
\begin{aligned}
& \text { (b) } \int_{0}^{1} \int_{y}^{1} \int_{0}^{x y} e^{z / y} \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y \\
& =\left.\int_{0}^{1} \int_{y}^{1} y e^{\frac{z}{y}}\right|_{z=0} ^{z=x y} d x d y \\
& =\int_{0}^{1} \int_{y}^{1}\left(y e^{x}-y\right) d x d y \\
& =\left.\int_{0}^{1}\left(y e^{x}-x y\right)\right|_{x=y} ^{x=1} d y \\
& =\int_{0}^{1}\left(y e-y-y e^{y}+y^{2}\right) d y \\
& =\int_{0}^{1}\left[(e-1) y+y^{2}\right] d y-\int_{0}^{1} y e^{y} d y \quad \begin{array}{l}
u=y \quad d v=e^{y} d y \\
d u=d y \quad v=e^{y}
\end{array} \\
& =\frac{e-1}{2} y^{2}+\left.\frac{1}{3} y^{3}\right|_{y=0} ^{1}-\left.y e^{y}\right|_{0} ^{1}+\int_{0}^{1} e^{y} d y \\
& =\frac{e}{2}-\frac{1}{2}+\frac{1}{3}-e+\left.e^{y}\right|_{0} ^{1} \\
& =-\frac{1}{2} e-\frac{1}{6}+e-1=\frac{1}{2} e-\frac{7}{6}
\end{aligned}
$$

(c) $\iiint_{E} \sin (y) \mathrm{d} V$, where $E$ is the region below the plane $z=x$ and above the triangular region with vertices $(0,0,0),(\pi, 0,0)$, and $(0, \pi, 0)$.

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{\pi-x} \int_{0}^{x} \sin (y) d z d y d x \\
& =\left.\int_{0}^{\pi} \int_{0}^{\pi-x} z \sin (y)\right|_{z=0} ^{z=x} d y d x \\
& =\int_{0}^{\pi} \int_{0}^{\pi-x} x \sin (y) d y d x \\
& =\int_{0}^{\pi}-\left.x \cos (y)\right|_{y=0} ^{y=\pi-x} d x \\
& =-\int_{0}^{\pi}(x \cos (\pi-x)-x) d x \quad \begin{array}{l}
u=\pi-x \\
d u=-d x
\end{array} \\
& =\int_{\pi}^{0}(\pi-u) \cos (u) d u+\int_{0}^{\pi} x d x \\
& =\int_{\pi}^{0} \pi \cos (u) d u-\int_{\pi}^{0} u \cos (u) d u+\left.\frac{1}{2} x^{2}\right|_{0} ^{\pi} \quad \begin{array}{ll}
u_{1}=u & d v=\cos (u) d u \\
0 & d u_{1}=d u \quad v=\sin (u)
\end{array} \\
& \begin{aligned}
=\left.\pi \sin (u)\right|_{\pi} ^{0}-\left.u \sin (u)\right|_{\pi} ^{0}+\int_{\pi}^{0} \sin (u) d u+\frac{1}{2} \pi^{2} & =-\left.\cos (u)\right|_{\pi} ^{0}+\frac{1}{2} \pi^{2} \\
& =-\cos (0)+\cos (\pi)+\frac{1}{2} \pi^{2}
\end{aligned} \\
& =\frac{1}{2} \pi^{2}-2
\end{aligned}
$$

(d) $\iiint_{E} x z \mathrm{~d} V$, where $E$ is the solid tetrahedron with vertices $(0,0,0),(1,0,1),(0,1,1)$, and $(0,0,1)$.

Find the orange plane:
$\langle 1,0,1\rangle$ and $\langle 0,1,1\rangle$ are vectors in the plane. So, a normal vector to the plane is

$$
\begin{aligned}
\vec{n} & =\langle 1,0,1\rangle \times\langle 0,1,1\rangle \\
& =\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|=\langle-1,-1,1\rangle
\end{aligned}
$$


equation for the onamge plane:

$$
-(x-0)-(y-0)+(z-0)=0
$$

$$
z=x+y
$$

$$
\int_{0}^{1} \int_{0}^{1-x} \int_{x+y}^{1} x z d z d y d x=\cdots=\frac{1}{30}
$$



Exercise 2
Find the volume of the solid enclosed by the paraboloids $x=y^{2}+z^{2}$ and $x=4-y^{2}-z^{2}$.

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r^{2}}^{4-r^{2}} 1 r d x d r d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}}\left(4-r^{2}-r^{2}\right) r d r d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}}\left(4 r-2 r^{3}\right) d r d \theta \\
= & \left.\int_{0}^{2 \pi}\left(\frac{4}{2} r^{2}-\frac{2}{4} r^{4}\right)\right|_{r=0} ^{r=\sqrt{2}} d \theta \\
= & \int_{0}^{2 \pi}\left(2(2)-\frac{1}{2}(4)\right) d \theta \\
= & \int_{0}^{2 \pi} 2 d \theta \\
= & 4 \pi
\end{aligned}
$$


intersection:

$$
\begin{aligned}
& 4-r^{2}=r^{2} \\
& \Rightarrow 2 r^{2}=4 \\
& \Rightarrow r^{2}=2 \\
& \Rightarrow r=\sqrt{2}
\end{aligned}
$$



Exercise 3
Find the volume of the solid enclosed by the cylinder $x^{2}+z^{2}=4$ and the planes $y=-1$ and $y+z=4$.

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2} \int_{-1}^{4-r \sin \theta} \mid r d y d r d \theta \\
= & \left.\int_{0}^{2 \pi} \int_{0}^{2} r y\right|_{y=-1} ^{r=4-r \sin \theta} d r d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{2} r[4-r \sin \theta+1] d r d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{2}\left(5 r-r^{2} \sin \theta\right) d r d \theta \\
= & \left.\int_{0}^{2 \pi}\left(\frac{5}{2} r^{2}-\frac{1}{3} r^{3} \sin \theta\right)\right|_{r=0} ^{r=2} d \theta \\
= & \int_{0}^{2 \pi}\left(\frac{5}{2}(4)-\frac{8}{3} \sin \theta\right) d \theta \\
= & \int_{0}^{2 \pi}\left(10-\frac{8}{3} \sin \theta\right) d \theta \\
= & 10 \theta+\left.\frac{8}{3} \cos \theta\right|_{\theta=0} \\
= & 20 \pi+\frac{8}{3}(\cos (2 \pi)-\cos (0))=20 \pi
\end{aligned}
$$


side view:

projection onto $x z$-plane:


Exercise 4

$$
x=1 \quad z=y
$$

Write the following integral in a few different orders of integration: $\int_{0}^{1} \int_{y}^{1} \int_{0}^{y} f(x, y, z) \mathrm{d} z \mathrm{~d} x \mathrm{~d} y$


$$
x=y \quad z=0
$$



$$
\int_{0}^{1} \int_{0}^{x} \int_{z}^{x} f(x, y, z) d y d z d x
$$

15.2 - TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

Review
(a) Cylindrical coordinates are "polar coordinates plus a $z$ direction."
(b) Conversion from rectangular to/from cylindrical coordinates:

$$
\begin{aligned}
x & =r \cos \theta & y & =r \sin \theta \\
r^{2} & =x^{2}+y^{2} & \tan \theta & =\frac{y}{x}
\end{aligned}
$$

Exercise 5
Convert the following points from rectangular to cylindrical coordinates.
(a) $(x, y, z)=(-\sqrt{2}, \sqrt{2}, 1)$.

$$
\begin{aligned}
& r=\sqrt{(-\sqrt{2})^{2}+(\sqrt{2})^{2}}=\sqrt{4}=2 \\
& \theta=\arctan \left(\frac{\sqrt{2}}{-\sqrt{2}}\right)=\arctan (-1)=\frac{3 \pi}{4} \text { or. } \frac{7 \pi}{4} \\
& (r, \theta, z)=\left(2, \frac{3 \pi}{4}, 1\right)
\end{aligned}
$$

(b) $(x, y, z)=(2,2,2)$.

$$
\begin{aligned}
& r=\sqrt{2^{2}+2^{2}}=\sqrt{8} \\
& \theta=\arctan \left(\frac{2}{2}\right)=\arctan (1)=\pi / 4 \text { on } \frac{5 \pi}{4} \\
& (r, \theta, z)=(\sqrt{8}, \pi / 4,2)
\end{aligned}
$$

Exercise 6
Convert $(r, \theta, z)=(2, \pi / 6,-1)$ to rectangular coordinates.

$$
\begin{aligned}
& x=2 \cos \left(\frac{\pi}{6}\right)=\sqrt{3} \\
& y=2 \sin \left(\frac{\pi}{6}\right)=1 \\
& z=-1 \\
& (x, y, z)=(\sqrt{3}, 1,-1)
\end{aligned}
$$

Exercise 7
Graph $r=2$.

cylinder with radius 2

Exercise 8

plane that is vertical and goes in the diction $\theta=\frac{\pi}{3}$.

## Exercise 9

Sketch the solid $r^{2} \leq z \leq 8-r^{2}$.


## Exercise 10

Sketch the solid $0 \leq \theta \leq \pi / 2, \tau \sim r \leq z \leq 2$.


Page 10 of 12

Exercise 11
For the following, set up the integral in cylindrical coordinates, but do not evaluate.
(a) $\iiint_{E}(x+y+z) \mathrm{d} V$, where $E$ is the solid in the first octant under the paraboloid $z=4-x^{2}-y^{2}$.



At $z=0$ :

$$
\begin{aligned}
& 4-x^{2}-y^{2}=0 \\
& x^{2}+y^{2}=4
\end{aligned}
$$


(b) $\iiint_{E}(x-y) \mathrm{d} V$, where $E$ is the solid that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=16$, above the $x y$-plane, and below the plane $z=y+4$.

$$
\int_{0}^{2 \pi} \int_{1}^{4} \int_{0}^{r \sin \theta+4}(r \cos \theta-r \sin \theta) r d z d r d \theta
$$



