EXAM 3 REVIEW

Exercise 1
Convert $(x, y, z)=(\sqrt{3},-1,2 \sqrt{3})$ from rectangular to cylindrical and spherical coordinates.
cylindrical:

$$
r=\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=2
$$

$$
\theta=\arctan \left(\frac{-1}{\sqrt{3}}\right)=\frac{5 \pi}{6} \operatorname{tar} \frac{11 \pi}{6}
$$

$$
(r, \theta, z)=\left(2, \frac{11 \pi}{6}, 2 \sqrt{3}\right)
$$

$$
\begin{aligned}
& \rho=\sqrt{(\sqrt{3})^{2}+(-1)^{2}+(2 \sqrt{3})^{2}}=4 \\
& \phi=\arccos \left(\frac{2 \sqrt{3}}{4}\right)=\frac{\pi}{6} \\
& \theta=\text { same e as cylindrical }
\end{aligned}
$$

Exercise 2
Convert $(r, \theta, z)=(1,2 \pi / 3,-3)$ to rectangular coordinates.

$$
\begin{aligned}
& x=r \cos \theta=\cos (2 \pi / 3)=\frac{-1}{2} \\
& y=r \sin \theta=\sin (2 \pi / 3)=\frac{\sqrt{3}}{2} \\
& (x, y, z)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2},-3\right)
\end{aligned}
$$

Exercise 3
Convert $(\rho, \theta, \phi)=(6, \pi / 3, \pi / 6)$ to rectangular coordinates.

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta=6 \sin (\pi / 6) \cos (\pi / 3)=6\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \\
& y=\rho \sin \phi \sin \theta=6 \sin (\pi / 6) \sin (\pi / 3)=6\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& z=\rho \cos \phi=6 \cos (\pi / 6)=6\left(\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Exercise 4
In cylindrical coordinates, graph $z=r$. Also graph $r=\cos (\theta)$.

Exercise 5
In spherical coordinates, graph $\theta=\pi / 3$. Also graph $\phi=2 \pi / 3$.

Exercise 6

Set up but do not evaluate the following integrals. Set them up in the coordinate system you would try to actually evaluate them in.
(a) $\iint_{D} \frac{y}{x^{2}+1} \mathrm{~d} A$, where $D=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq \sqrt{x}\}$.

$$
\int_{0}^{4} \int_{0}^{\sqrt{x}} \frac{y}{x^{2}+1} d y d x
$$

(b) $\iint_{D} x \cos (y) \mathrm{d} A$, where D is the region bounded by $y=0, y=x^{2}$, and $x=1$.

$$
\int_{0}^{1} \int_{0}^{x^{2}} x \cos (y) d y d x
$$

(c) $\iiint_{E} x e^{x^{2}+y^{2}+z^{2}} \mathrm{~d} V$, where E is the portion of the unit ball in the first octant.

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho \sin \phi \cos \theta e^{\rho^{2}} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(d) Find the area of the region inside the circle $(x-1)^{2}+y^{2}=1$ and outside the circle $x^{2}+y^{2}=1$.

$$
\int_{-\pi / 3}^{\pi / 3} \int_{1}^{2 \cos \theta} 1 \cdot r d r d \theta
$$

$$
\begin{gathered}
x^{2}-2 x+1+y^{2}=1 \\
x^{2}+y^{2}=2 x \\
r^{2}=2 r \cos \theta \\
r=2 \cos \theta
\end{gathered}
$$

At what angle do the two circles intersect? $\pi / 3$ and $-\pi / 3$

(e) Find the volume under $z=x^{2}+3 y$ and above the triangle in the $x y$-plane with vertices $(0,0)$, $(2,0)$, and (Sen). $(0,-1)$

20
$\int_{0}^{2} \int_{\frac{1}{2} x-1}^{0}\left(x^{2}+3 y\right) d y d x$

(f) Find the volume of the region bounded between the paraboloid $z=1+2 x^{2}+2 y^{2}$ and the plane $z=7$ in the first octant.

$$
\int_{0}^{\pi / 2} \int_{0}^{\sqrt{3}}\left(7-\left(1+2 r^{2}\right)\right) r d r d \theta
$$

$$
\begin{aligned}
& \text { intersection: } \\
& 7=1+2 r^{2} \\
& 6=2 r^{2} \\
& 3=r^{2} \\
& r=\sqrt{3}
\end{aligned}
$$

(g) $\iiint_{\rho=3} y^{2} x^{2} \mathrm{~d} V$, where E lies below the cone $\phi=5 \pi / 6$ and between the spheres $\rho=1$ and

$$
\int_{0}^{2 \pi} \int_{\frac{5 \pi}{6}}^{\pi} \int_{1}^{3} \rho^{2} \sin ^{2} \phi \sin ^{2} \theta \rho^{2} \sin ^{2} \phi \cos ^{2} \theta \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(h) Find the volume of the region that is inside both the cylinder $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$.

$$
\int_{0}^{2 \pi} \int_{0}^{2} \int_{-\sqrt{64-4 r^{2}}}^{\sqrt{64-4 r^{2}}} 1 r d z d r d \theta
$$

top (bottom of ellipsoid:

$$
\begin{aligned}
& z^{2}=64-4 r^{2} \\
& z= \pm \sqrt{64-4 r^{2}}
\end{aligned}
$$

(i) $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} \mathrm{~d} V$, where E lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=16$.

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{4}\left(\rho^{2}\right)^{3 / 2} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

Intersection:

$$
\begin{aligned}
r^{2}+r^{2} & =16 \\
2 r^{2} & =16 \\
r^{2} & =8 \\
r & =2 \sqrt{2}
\end{aligned}
$$

(j) $\iiint_{E}(x+y+z) \mathrm{d} V$, where E is the solid under the paraboloid $z=4-x^{2}-y^{2}$, above the $x y$-plane, and on the positive x side of the plane $x=0$.

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} \int_{0}^{4-r^{2}}(r \cos \theta+r \sin \theta+z) r d z d r d \theta
$$

Exercise 7
Evaluate the following.

$$
\text { (a) } \begin{aligned}
& \int_{0}^{1} \int_{x^{2}}^{1} \sqrt{y} \sin (y) \mathrm{d} y \mathrm{~d} x \\
= & \int_{0}^{1} \int_{0}^{\sqrt{y}} \sqrt{y} \sin (y) d x d y \\
= & \int_{0}^{1} y \sin (y) d y \quad d u=d y \quad v=-\cos (y) \\
= & -\left.y \cos (y)\right|_{0} ^{1}-\int_{0}^{1}(-\cos (y)) d y \\
= & -\cos (1)+\left.\sin (y)\right|_{0} ^{1} \\
= & -\cos (1)+\sin (1) .
\end{aligned}
$$

(b) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{-x^{2}-y^{2}} \mathrm{~d} y \mathrm{~d} x$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \int_{0}^{2} e^{-r^{2} r d r d \theta \quad d u=-2 r d r} \\
& =\int_{0}^{\pi / 2} \frac{-1}{2} \int_{0}^{-4} e^{u} d u d \theta \\
& =\left.\int_{0}^{\pi / 2} \frac{-1}{2} e^{u}\right|_{u=0} ^{u=4} d \theta \\
& =-\frac{1}{2} \int_{0}^{\pi / 2}\left(e^{4}-1\right) d \theta \\
& \left.=\frac{-\pi}{4}\left(e^{4}-1\right) .\right)
\end{aligned}
$$

Exercise 8
Find the mass of a ball of radius 3 if its density is proportional to the distance from the center of the ball. (Assume that the constant of proportionality is 1.) [Note: not all instructors covered this topic.]

$$
\begin{aligned}
& \text { density }(\rho, \theta, \phi)=\rho \\
& m a s s=\int_{B} \int_{0} d \text { ensity } d V \\
&=\int_{0}^{2 \pi} \pi \int_{0}^{\pi} \rho \rho^{2} \sin \phi d \rho d \phi d \theta \\
&=2 \pi \int_{0}^{3} \sin \phi d \phi \rho_{0}^{3} d \rho \\
&=\left.2 \pi(-\cos \phi)\right|_{\phi} ^{3}=0 \\
&=-\left.2 \pi(-1-1) \frac{1}{4} \rho_{0}^{4}\right|_{0} ^{4} \\
&=\left.3\right|_{0} ^{4} \pi
\end{aligned}
$$

