

Math 251 – Spring 2023 "Week-in-Review"

Wir 8: Exam 3 Review

Sections 15.1-15.4, 15.6-15.9

Problem 1. Let R be the region in the xy-plane bounded by y=2x, x=10, and y=-1. Set up but do not evaluate $\int \int_R (x^2+y^2) \, dA$ in the order $dy \, dx$ and $dx \, dy$.

Math 251 – Spring 2023 "Week-in-Review"

Problem 2. Evaluate $\int_0^3 \int_0^{\sqrt{9-x^2}} e^{-x^2-y^2} \, dy \, dx$

Math 251 – Spring 2023 "Week-in-Review"

Problem 3. Let *D* be the region bounded by $y=0,\,y=x^2,\,$ and x=3. Find $\int\int_D 3x\cos y\,dA.$

Math 251 – Spring 2023 "Week-in-Review"

Problem 4. Compute
$$\int_{0}^{3} \int_{3y}^{9} 7e^{x^{2}} dx dy$$
.

Math 251 – Spring 2023 "Week-in-Review"

Problem 5. Let R be the region that lies to the left of the y-axis between the circles $x^2+y^2=1$ and $x^2+y^2=16$. Find $\int \int_R 5(x+y)$.

Math 251 – Spring 2023 "Week-in-Review"

Problem 6. Find the volume of the sold that is above the xy plane, below the ellipsoid $4x^2 + 4y^2 + z^2 = 64$ but inside the cylinder $x^2 + y^2 = 9$.

Math 251 – Spring 2023 "Week-in-Review"

Problem 7. Let D be the triangular region with vertices (0,1), (1,2), and (4,1). Set up but do not evaluate $\int \int_D 7y^2 dA$ in the order dy dx and dx dy.

Math 251 – Spring 2023 "Week-in-Review"

Problem 8. Let
$$D=\{(x,y): 0\leq x\leq 1, 0\leq y\leq x^2\}$$
. Evaluate
$$\int\int_D \frac{5y}{6x^5+1}\,dA.$$

Math 251 – Spring 2023 "Week-in-Review"

Problem 9. Express $\int \int \int_E f(x,y,z) \, dV$ in the order dydzdx if E is the solid bounded by $y=x^2, \ z=0, \ y+4z=16.$

Math 251 – Spring 2023 "Week-in-Review"

Problem 10. Find the volume of the solid that is enclosed by the cylinder $x^2 + y^2 = 9$ and the planes y + z = 12 and z = 2.

Math 251 – Spring 2023 "Week-in-Review"

Problem 11. Find the volume of the solid enclosed by the paraboloids $y = x^2 + z^2$ and $y = 32 - x^2 - z^2$.

Math 251 – Spring 2023 "Week-in-Review"

Problem 12. Convert to Cylindrical: $\int_{-9}^{9} \int_{-\sqrt{81-y^2}}^{\sqrt{81-y^2}} \int_{\sqrt{x^2+y^2}}^{13} xz \, dz \, dx \, dy$.

Math 251 – Spring 2023 "Week-in-Review"

Problem 13. Find $\int \int_E (x^2 + y^2 + z^2) dV$ where E is the part of the ball centered at the origin with radius 2 in the first octant.

Math 251 – Spring 2023 "Week-in-Review"

Problem 14. Evaluate in spherical coordinates. $\int_0^{10} \int_0^{\sqrt{100-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{200-x^2-y^2}} yz \, dz \, dy \, dx$

Math 251 – Spring 2023 "Week-in-Review"

Problem 15. Let E be the region that lies between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=9$. Set up but do not evaluate $\int \int \int_E (x+y+z)\,dV$ in spherical coordinates.

Math 251 – Spring 2023 "Week-in-Review"

Problem 16. Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the xy plane and below the cone $z = \sqrt{x^2 + y^2}$.

Math 251 – Spring 2023 "Week-in-Review"

Problem 17. Let R be the triangular region with vertices (0,0), (9,1), (1,9). Using the transformation x=9u+v and y=u+9v find $\int \int_R (x-10y)dA$.

Math 251 – Spring 2023 "Week-in-Review"

Problem 18. Let R be the parallelogram enclosed by the lines x-6y=0, x-6y=9, 6x-y=7, 6x-y=10. Using the transformation u=x-6y and v=6x-y, find $\int\int_R 9\frac{x-6y}{6x-y}dA$

Math 251 – Spring 2023 "Week-in-Review"

Problem 19. Let R be the region bounded by $25x^2 + 4y^2 = 100$. Using the transformation x = 2u and y = 5v, find $\int \int_R 4x^2 dA$.