Concepts to know Exam 3: Math 142

Sections 5.1 - 5.5, 6.1, 6.2, 6.4, and 6.5Section 6.3 will be on the final.

- Section 5.1: First derivative and graphs
 - Finding critical values.
 - $\ast\,$ MUST be in the domain
 - * where f'(x) = 0 or f'(x)DNE
 - Classifying critical values as
 - * Relative maximum
 - * relative minimum
 - * neither
 - Finding intervals where f(x) is increasing/decreasing
 - first derivative test using a sign chart
- Section 5.2: Second derivative.
 - higher order derivatives: second derivative f''(x), third derivative f'''(x), fourth derivative $f^{(4)}(x)$
 - Finding possible inflection values
 - * MUST be in the domain
 - * where f''(x) = 0 or f''(x)DNE
 - Finding the intervals of concavity
 - * Concave up means first derivative is increasing and second derivative is positive
 - * concave down means first derivative is decreasing and second derivative is negative.
 - inflection points.
 - interpretation of the inflection point.
- Section 5.3: Graphical analysis and curve sketching
 - Second derivative test
 - Curve Sketching Strategy(these steps do not need to be memorized)
 - 1. Domain
 - 2. intercepts
 - 3. asymptotes

- 4. first derivative information
 - * critical values
 - * increasing/decreasing
 - * relative min/max
- 5. second derivative information
 - * concave up/down
 - * inflection points
- 6. Sketch the graph
- If given the information about a function, sketch a graph.
- Section 5.4 and 5.5: Optimizing functions
 - Absolute maximum/minimum
 - * If the interval is a closed interval and the function is continuous on the interval,
 - 1. find critical values
 - 2. check the critical values in the interval and the ends of the interval to find the abs max and abs min
 - * if the interval is not closed OR the function is not continuous on the interval, then do curve sketching strategy to find abs max/min.
 - Word problems. All of the problems covered in class are fair game.
 - The second derivative test (page 332)
- Section 6.1: Indefinite integral
 - Integration rules
 - Find f(x) if given f'(x) and a point on the function.
- Section 6.2: Area and the definite integral
 - Riemann sum (by hand or by calculator)
 - * Left sum
 - * Right sum
 - * midpoint
 - When a Riemann sum is an over or under estimate.
 - The definite integral, $\int_{a}^{b} f(x)dx$, means to perform a Riemann sum with an infinite number of rectangles.
 - If $f(x) \ge 0$ on the interval [a, b] then $\int_{a}^{b} f(x) dx$ represents area

- If $f(x) \geq 0$ on the interval [a, b] then $\int_{a}^{b} f(x) dx$ represents a difference of area.
- Area below the x-axis is counted as negative area by the Riemann sum.
- Integration addition rule (page 372)
- Section 6.4: Integration by u-substitution
 - indefinite integrals with u-sub.
 - definite integrals with u-sub.
- Section 6.5: More Integration Rules
 - Rule for $\int e^x dx$ and $\int \frac{1}{x} dx$
- Any additional topics discussed in class