Regression

Using regression to get a function that models the data.
Scatter plot: First we need to know how to use the calculator to draw a scatter plot. This will allow you to visually check the general shape of the data.

Step 1. The data must be entered into the calculator. Press STAT ENTER. This puts you in the edit menu. Enter the data into lists $\mathrm{x}=\mathrm{L}_{1}$ and $\mathrm{y}=\mathrm{L}_{2}$. If you choose any other list, just make the appropriate changes below. If some or all of the list are gone, you can get them back by pressing | STAT | 5 | ENTER. To clear |
| :--- | :--- | :--- | :--- | out a list, arrow up to the top of the list (highlighting its name) and press CLEAR ENTER.

Step 2. This setup needs to be done only once. To set up the stat plots press 2nd $Y=$. Choose your plot and make sure that it is on, x-list $=L_{1}, y$-list $=L_{2}$, and the type is the first graph on the first line. Once this is set up you can turn it on and off from the top of the $\mathrm{Y}=$ screen.

Step 3. Press ZOOM 9 (ZoomStat) to graph the scatter plot.

Lines: Given a table of values, we know that the data is linear if a constant change in x produces a constant change in y. Not all linear data sets meet this strict requirement. Data Set 1 does correspond to a linear function; however, it is not easy to notice this from the data. The scatter plot tells a different story. Data Set 2 has a constant change in x but not a constant change in the y . This means that it is not strictly linear. But looking at the scatter plot of this data shows its linear nature.

Data Set 1

x	2	4.5	8	9.2	12
y	16	23.5	34	37.6	46

Now getting an equation for Data Set 1 is easy since we discovered (by the scatter plot) that it is linear. Pick any two points and compute the equation. Data Set 2 presents a different problem. It does have a linear nature, so which two points do we pick? Answer: Let the calculator do the job for us.

Having the calculator find the best fitting line to a set of data is called linear regression. Of course, this only works well if the data has a linear nature. To perform the regression, enter the data into the lists: x in L_{1} and y in L_{2}. To get the calculator to do the regression press STAT \triangle. 4 . On the screen of the calculator you
 you should now see $\operatorname{LinReg}(\mathbf{a x}+\mathbf{b}) \mathbf{L}_{3}, \mathbf{L}_{4}$, now press enter.

Exponential: Given a table of values, our book tells us that they correspond to an exponential function if: the x -values have a difference of 1 and the ratios of the y values (a y -value divided by the previous y -value) is constant. Data Set 3 meets this condition. Notice $\frac{24}{16}=\frac{36}{24}=\frac{54}{36}=1.5$ This means that in the formula $y=P_{o} a^{x}, a=1.5$. Data Set 4 also corresponds to an exponential function. Data Set 5 seems to be exponential in nature. This is confirmed by the scatter plots for the different data sets.

Data Set 3				
x	0	1	2	3
y	16	24	36	54

Data Set 4

x	1	4	5	7
y	3	24	48	192

Data Set 5

x	1	3	4	6	7
y	23.5	70.3	169.8	381.3	703.7

The calculator does exponential regression also. Press STAT $\triangle 0$. On the screen of the calculator you
 should see $\operatorname{ExpReg} \mathbf{L}_{3}, \mathbf{L}_{4}$, now press enter.

