Reviewing the Determinate
The determinate of a 2×2 matrix is computed by

The determinate of a 3×3 matrix is computed by

Example: Find the determinate of this matrices.

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 3 & 4 \\
5 & 0 & 2 \\
-3 & 6 & 7
\end{array}\right| & =1\left|\begin{array}{ll}
0 & 2 \\
0 & 7
\end{array}\right|-3\left|\begin{array}{cc}
5 & 2 \\
-3 & 7
\end{array}\right|+4\left|\begin{array}{cc}
5 & 0 \\
-3 & 6
\end{array}\right| \\
& =1[0(7)-(2)(6)]-3[5(7)-(-3)(2)]+4[5(6)-(-3)(0)] \\
& =1(0-12)-3(35--6)+4(30-0) \\
& =1(-12)-3(41)+4(30) \\
& =-12-123+120=-15
\end{aligned}
$$

Example: Find the determinate of this matrices.
$\left|\begin{array}{ccc}1 & 3 & 4 \\ 5 & 0 & 2 \\ -3 & 6 & 7\end{array}\right|$

$$
\begin{array}{r}
1 \\
35 \\
\quad 3 \\
\hline 105
\end{array}
$$

$$
\begin{aligned}
& =1(0)(7)+(3)(2)(-3)+4(5)(6)-(-3)(0)(4)-(6)(2)(1)-(7) / 5)(3) \\
& =0+-18+120-0-12-105 \\
& =120-30-105 \\
& =-15
\end{aligned}
$$

Definition: If \mathbf{a} and \mathbf{b} are two nonzero three-dimensional vectors, the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=(|\mathbf{a}||\mathbf{b}| \sin (\theta)) \mathbf{n}
$$

where θ is the angle, $0 \leq \theta \leq \pi$, between \mathbf{a} and \mathbf{b} and \mathbf{n} is a unit vector perpendicular to both \mathbf{a} and \mathbf{b} and whose direction is given by the right-hand rule: If the fingers of your right hand curls through the angle θ from \mathbf{a} to \mathbf{b}, then your thumb points in the direction of \mathbf{n}.

Note: $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$
Note: Two non-zero vectors, \mathbf{a} and \mathbf{b}, are parallel if and only if $\mathbf{a} \times \mathbf{b}=\mathbf{0}$
$\operatorname{Pg} 3$

Geometric Interpretation:

$$
\vec{a} \times \vec{b}-(|4| / b / \sin \theta) \vec{n}
$$

$$
|a \times b|=||a|| b|\sin \theta|
$$

is Area of the

$$
\begin{aligned}
& \text { parallelogram created by the } \\
& \text { vectors of b. }
\end{aligned}
$$

$$
\text { vectors } a+b \text {. }
$$

Properties of the Cross Product: If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and d is a scalar, then

- $a \times a=0$
$\longrightarrow \bullet \mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})=-\mathbf{b} \times \mathbf{a}$
- $(d \mathbf{a}) \times \mathbf{b}=d(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(d \mathbf{b})$
- $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
- $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$

Definition: If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then

$$
\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, \quad a_{3} b_{1}-a_{1} b_{3}, \quad a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

$$
\begin{aligned}
a \times b= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k} \\
& =\left(a_{2} b_{3}-b_{2} a_{3}\right) i-\left(a_{1} b_{3}-b_{1} a_{3}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k
\end{aligned}
$$

Example: Compute the following for the vectors $\mathbf{a}=\langle 1,3,4\rangle$ and $\mathbf{b}=\langle 2,-5,6\rangle$.
A) $\mathbf{a} \times \mathbf{b}=$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
i & j & k \\
1 & 3 & 4 \\
2 & -5 & 6
\end{array}\right|=\left|\begin{array}{cc}
3 & 4 \\
-5 \chi_{0}
\end{array}\right| i-\left|\begin{array}{cc}
1 & 4 \\
2 & 6
\end{array}\right| j+\left|\begin{array}{cc}
1 & 3 \\
2 & -5
\end{array}\right| k \\
& =[(3)(6)-(-5)(4)] i-[(1)(6)-(2)(4)] j+[1(-5)-(2)(3)] k \\
& =(18--20) i-(6-8) j+(-5-6) / 1 \\
& =38 i+2 j-1111=\langle 38,2,-11\rangle
\end{aligned}
$$

$$
\begin{aligned}
& 18 i+8 j-5 k-6 k--20 i-6 j \\
& =38 i+2 j-1111
\end{aligned}
$$

B) $\mathbf{b} \times \mathbf{a}=-(2 \times 6)=\langle-38,-2,11\rangle$
C) $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0$

Pg 5

Example: Find a vector orthogonal to the plane determined by the points $A(1,2,3)$, $B(4,6,8)$, and $C(15,2,-5)$

$$
\begin{array}{ll}
\overrightarrow{A B}=\langle 3,4,5\rangle & \overrightarrow{A B} \times \overrightarrow{A C}=\ldots=\langle-32,94,-56\rangle \\
\overrightarrow{A C}=\langle 14,0,-8\rangle &
\end{array}
$$

Pg 6

Example: Find the area of the parallelogram with vertices: $P(1,1,2), Q(6,1,2)$, $R(4,5,5)$, and $S(9,5,5)$
$|a \times b|=$ area of the parallologemem created b_{y} vectors an $+b$

$$
\begin{array}{lrl}
\overrightarrow{P Q}=\langle 5,0,0\rangle & \overrightarrow{P Q} \times \overrightarrow{P R}=\cdots=\langle 0,-15,20\rangle \\
\overrightarrow{P R}=\langle 3,4,3\rangle & \text { Area } & =|\overrightarrow{P Q} \times \overrightarrow{P R}|=\sqrt{0^{2}+(-15)^{2}+20^{2}} \\
& =\sqrt{0+225+400} \\
& =\sqrt{625}=25
\end{array}
$$

Example: Find the area of the triangle determined by the points $P(1,1,2), Q(6,1,2)$, and $R(4,5,5)$.

$$
\begin{aligned}
& \text { from the last problem } \\
& \begin{aligned}
\text { Area } & =\frac{1}{2}|\overrightarrow{P Q} \times \overrightarrow{P R}| \\
& =\frac{1}{2}(25)=12.5
\end{aligned}
\end{aligned}
$$

Definition: If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, and $\mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ are vectors, then the scalar triple product is given by

$$
\begin{aligned}
& \underbrace{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}=\mathbf{a} \cdot\left(\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \mathbf{k}\right) \\
& \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
\end{aligned}
$$

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Note: The geometric interpretation of scalar triple product is that its magnitude is the volume of the parallelepiped formed by the vectors: \mathbf{a}, \mathbf{b}, and \mathbf{c}.

$$
\begin{aligned}
& a \cdot(b \times c)=|a||b \times c| \cos \theta \\
& |b \times c|=\begin{array}{c}
a r e n ~ o f ~ p a r a l l e l o g r a n ~ c r e a t e d ~ b y ~ \\
\text { vectires } b+c
\end{array} \\
& |a| \cos \theta=\text { being } 1 t^{\prime} \text { " of The object: } \\
& |a \cdot(b \times c)|=\text { volume of the } \\
& \text { purallelpoped created by the } \\
& 3 \text { vectors. }
\end{aligned}
$$

Example: Compute a scalar triple product of these vectors: $\mathbf{a}=\langle 1,2,3\rangle$,
$\mathbf{b}=\langle 4,5,6\rangle$, and $\mathbf{c}=\langle 2,7,5\rangle$ Are these vectors co-planer?

$$
\begin{aligned}
a \cdot(b \times c) & =\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
2 & 7 & 5
\end{array}\right| \\
& =25+24+84-30-42-40 \\
& =21
\end{aligned}
$$

$$
\begin{aligned}
& 12 \\
& \frac{7}{8} \\
& \frac{7}{84}
\end{aligned}
$$

not woplaner

Pg 10

Example: Determine if these points are co-planer: $A(4,-3,1), B(6,-4,7), C(1,2,2)$, and $D(0,1,11)$

$$
\begin{aligned}
& \overrightarrow{A B}=\langle 2,-1,6\rangle \\
& \overrightarrow{A C}=\langle-3,5,1\rangle \\
& \overrightarrow{A D}=\langle-4,4,10\rangle
\end{aligned}
$$

$$
\begin{array}{r}
\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})=\cdots \cdot=114 \\
\text { not co-planer }
\end{array}
$$

