In Cal II, the arc length of a two-dimensional smooth curve that is only traversed once on an interval $\underline{\underline{I}}$ was given by

$$
L=\int_{I} d s \text { or } L=\int_{I} \underbrace{\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}} d t \quad d s=\sqrt{\left\langle x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t
$$

This can be extended to a space curve. If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ on the interval $a \leq t \leq b$, then the length of the curve is given by
$L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}+\underline{\left[h^{\prime}(t)\right]^{2}}} d t$
or
$L=\int_{a}^{b}\left|\mathrm{r}^{\prime}(t)\right| d t=\int_{I} d s$
$d s=\left|r^{\prime}\right| t \mid d t$ $d s=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}} d t$

Note: A curve $\mathbf{r}(t)$ is called smooth on an interval if $\mathbf{r}^{\prime}(t)$ is continuous and $\mathbf{r}^{\prime}(t) \neq 0$ on the interval. A smooth curve has no sharp corners or cusps, ie. the tangent vector has continuous movement. The arc length formula holds for smooth and piecewise-smooth curves.

Example: Find the length of the arc for $\mathbf{r}(t)=\langle 3 t, 2 \sin (t), 2 \cos (t)\rangle$ from the point
$(0,0,2)$ to $(6 \pi, 0,2)$
$\underbrace{t=2 \pi}_{t=0}$

$$
r^{\prime}=\langle 3,2 \cos (t),-2 \sin (t)\rangle
$$

$$
\begin{aligned}
L=\int_{I} d s & =\int_{0}^{2 \pi} \sqrt{3^{2}+(2 \cos t)^{2}+(-2 \sin t)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{9+4 \cos ^{2} t+4 \sin ^{2} t} d t=\int_{D}^{2 \pi} \sqrt{9+4\left[\cos ^{2} t+\sin ^{2} t\right]} d t \\
& =\int_{0}^{2 \pi} \sqrt{9+4} d t=\int_{0}^{2 \pi} \sqrt{13} d t=\left.t \sqrt{13}\right|_{0} ^{2 \pi} \\
& =2 \pi \sqrt{13}-D=2 \pi \sqrt{13}
\end{aligned}
$$



$$
\frac{d}{d t} Q=\left|r^{\prime}(t)\right| \cdot 1=\left|r^{\prime}(t)\right|
$$

Definition: The arc length function, $s$, is $s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$.
The arc length $s$ is called the arc length parameter.

Example: Find the arc length function for $\mathbf{r}(t)=\left\langle 1, t^{2}, t^{3}\right\rangle$ from the point $(1,0,0)$ in the direction of increasing $t$.

$$
\begin{aligned}
& r^{\prime}=\left\langle 0,2 t, 3 t^{2}\right\rangle \\
& r^{\prime}=\left\langle 0,2 n, 3 n^{2}\right\rangle
\end{aligned}
$$

$$
2=\int_{0}^{t} \sqrt{0+(2 n)^{2}+\left(3 n^{2}\right)^{2}} d u=\int_{v}^{t} \sqrt{4 n^{2}+9 n^{4}} d u
$$

$$
=\int_{0}^{t} \sqrt{u^{2}\left(4+9 u^{2}\right)} d u=\int_{0}^{t} u \sqrt{4+9 u^{2}} d u
$$

Substitution

$$
\begin{aligned}
& A=4+4 n^{2} \\
& d A=18 n d n \\
& \frac{1}{18 n} d A=d n
\end{aligned}
$$

Example: Reparametrize the curve $\mathbf{r}(t)=\langle 1+2 t, 3+t,-5 t\rangle$ with respect to arc

$$
r^{\prime}(t)=\langle 2,1,-5\rangle
$$ length measured from the point where $t=0$ in the direction of increasing $t$.

step 1

$$
\begin{aligned}
& s= \int_{0}^{t} \sqrt{2^{2}+1^{2}+(-5)^{2}} d u=\int_{D}^{t} \sqrt{4+1+25} d u=\int_{0}^{t} \sqrt{30} d u \\
&=\left.u \sqrt{30}\right|_{D} ^{t}=t \sqrt{30} \\
& 2=t \sqrt{30}
\end{aligned}
$$

Step 2 solve for $t$.

$$
t=\frac{2}{\sqrt{30}}
$$

Step ${ }^{3}$ give answer.

$$
r(2)=\left\langle 1+\frac{2 a}{\sqrt{30}}, 3+\frac{2}{\sqrt{30}}, \frac{-52}{\sqrt{30}}\right\rangle
$$

## Pg 5: curvature

Definition: The curvature, $\kappa$, of a curve is defined to be the magnitude of the rate of change of the unit tangent vector with respect to the arc length is given by $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|$


$$
\left|\frac{d T}{d s}\right|=\frac{\left|\frac{d T}{d t}\right|}{\left|\frac{d s}{d t}\right|}=\frac{\left|T^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}
$$

Unit tangent vectors at equally spaced points on $C$

Theorem The curvature of the curve given by the vector function $r$ is

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}=\left|\mathbf{r}^{\prime \prime}(s)\right|
$$

Example: Find the curvature of $\mathbf{r}(t)=\langle-\sqrt{2} \sin t, \cos t, \cos t\rangle$.

$$
\begin{aligned}
& r^{\prime}=\langle-\sqrt{2} \cos t,-\sin t,-\sin t\rangle \\
& \left|r^{\prime}\right|=\sqrt{2 \cos ^{2} t+\sin ^{2} t+\sin ^{2} t}=\sqrt{2 \cos ^{2} t+2 \sin ^{2} t^{2}=\sqrt{2}} \\
& T=\frac{\left.r^{\prime} / t\right)}{\left|r^{\prime}(t)\right|}=\frac{1}{\sqrt{2}}\langle-\sqrt{2} \cos t,-\sin t,-\sin t\rangle \\
& T 1 \\
& T
\end{aligned}
$$

Example: Find the curvature of $\mathbf{r}(t)=\left\langle 1+t, 1-t, 3 t^{2}\right\rangle$

$$
\begin{aligned}
r^{\prime} & =\langle 1,-1,6 t\rangle \\
r^{\prime \prime} & =\langle 0,0,6\rangle \\
r^{\prime} \times r^{\prime \prime} & =\cdots=\langle-6,-6,0\rangle \\
\left|r^{\prime} \times r^{\prime \prime}\right| & =\sqrt{36+36+0} \\
& =\sqrt{72} \\
K & =\frac{\sqrt{72}}{\left(\sqrt{2+36 t^{2}}\right)^{3}}
\end{aligned}
$$

$$
\left|r^{\prime}\right|=\sqrt{1+1+36 t^{2}}=\sqrt{2+36 t^{2}}
$$

$$
T=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}
$$

Note: The unit normal vector is defined as $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}$ and the binormal vector is defined as $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t) . \mathbf{B}(t)$ is also a unit vector. $\boldsymbol{N}$

The plane determined by $\mathbf{N}(t)$ and $\mathbf{B}(t)$ is called the normal plane. The plane determined by $\mathbf{T}(t)$ and $\mathbf{N}(t)$ is called the osculating plane.

