Section 12.6: Quadratic Surfaces

Ellipse:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

vil $a \neq b$

Hyperbola:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

A second-degree equation in three variables x, y, and z may be expressed in one of two standard forms

$$
A x^{2}+B y^{2}+C z^{2}+E=0 \quad \text { or } \quad A x^{2}+B y^{2}+C z=0
$$

where A, B, C, E are constants. To sketch the graph of a quadratic surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces or cross-sections of the surface.

Quadratic surfaces can be grouped into 5 categories: quadratic cylinders(cylindrical surfaces from 12.1 notes), ellipsoids, hyperboloids, cones, and paraboloids.

Pg 3: ellipsoid

For the following examples, assume that $a>0, b>0$, and $c>0$.

Ellipsoid:
standard equation: $\left(\begin{array}{l}\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\end{array}\right]$
intercepts: $(\pm a, 0,0),(0, \pm b, 0)$, and $(0,0, \pm c)$
cross-sections: (when they exist)
parallel to $x y$-plane $(z=k)$: ellipse
parallel to $x z$-plane $(y=k)$: ellipse
parallel to $y z-$ plane $(x=k)$: ellipse
Note: If $a=b=c$ the figure is a sphere. If only two of the constants are equal then the figure is an ellipsoid with the trace involving the two constants being a circle.

Ellipsoid

Hyperboloid of one s

Pga 5

Example: Sketch the graph of $x^{2}-\frac{y^{2}}{9}+z^{2}=1$

Let $y=0: x^{2}+z^{2}=1$

$$
\begin{array}{ll}
y= \pm 1 & x^{2}-\frac{1}{9}+z^{2}=1 \\
& x^{2}+z^{2}=1+\frac{1}{9} \\
y= \pm 2 & x^{2}-\frac{4}{4}+z^{2}=1 \\
& x^{2}+z^{2}=1+\frac{4}{4}
\end{array}
$$

Pg 6: hyperboloid (two sheets)

Hyperboloid of two sheets.
standard equation: $-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
cross-sections:
parallel to $x y$-plane $(z=k)$: ellipse (when they exist)
parallel to $x z-$ plane $(y=k)$: hyperbola parallel to $y z$-plane $(x=k)$: hyperbola

Note the axis of the hyperboloid corresponds to the variable whose coefficient is positive.

Cones:

standard equation: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$
or $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$
Note: If $a=b$ the we say we have a circular cone.
cross-sections:
parallel to $x y$-plane $(z=k)$: ellipse
parallel to $x z-\operatorname{plane}(y=k)$: hyperbola for $K \neq 0,2$ lines if $k=0$
parallel to $y z-\operatorname{plane}(x=k)$: hyperbola for $K \neq 0,2$ lines if $k=0$

Example: Sketch the graph of $z^{2}=x^{2}+y^{2}$
Circular cone

$$
\begin{array}{ll}
x=0 & x^{2}+y^{2}=0 \\
x=-1 & x^{2}+y^{2}=1
\end{array}
$$

Paraboloids:

Elliptic paraboloid
standard equation: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}$
Note: If $a=b$ the we say we have a circular paraboloid.
cross-sections:
parallel to $x y-\operatorname{plane}(z=k)$: ellipse for $k>0$
parallel to $x z-\operatorname{plane}(y=k)$: parabola
parallel to $y z$-plane $(x=k)$: parabola
Note the axis of the paraboloid corresponds to the
 variable raised to the first power.

$$
\begin{aligned}
& z=x^{2}+y^{2}+10 \\
& z=10-x^{2}-y^{2}
\end{aligned}
$$

Pg 10

hyperbolic paraboloid
standard equation: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{z}{c}$
cross-sections:
parallel to $x y-\operatorname{plane}(z=k)$: hyperbola for $k>0$
parallel to $x z-\operatorname{plane}(y=k)$: parabola
parallel to $y z$-plane $(x=k)$: parabola

Note the axis of the paraboloid corresponds to the variable raised to the first power.

