Section 15.5: Surface Area

Let S be a surface with equation $z=f(x, y)$. Assume that this surface is above the xy-plane and the domain D of f is a rectangular region. Let $R_{i j}$ be a rectangular sub-partition of D where $\left(x_{i}, y_{j}\right)$ is the corner of $R_{i j}$ that is closest to the origin.

Notice from the figure, that the section of tangent plane, $\Delta T_{i j}$ at the point $P_{i j}\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right)$ over the region $R_{i j}$ will approximate the surface area on that region of the domain. Thus $A(S) \approx \sum_{i=1} \sum_{j=1} \Delta T_{i j}$

Let a and \mathbf{b} be vectors that start at point $P_{i j}$ and lie along the edge of $\Delta T_{i j}$.
Thus a $=\left\langle\Delta x, 0, f_{x}\left(x_{i}, y_{i}\right) \Delta x\right\rangle$ and $\mathbf{b}=\left\langle 0, \Delta y, f_{y}\left(x_{i}, y_{i}\right) \Delta y\right\rangle$ and the area of $\Delta T_{i j}=|\mathbf{a} \times \mathbf{b}|$.

Now $\mathbf{a} \times \mathbf{b}=\left\langle-f_{x}\left(x_{i}, y_{j}\right) \Delta x \Delta y, \quad-f_{y}\left(x_{i}, y_{j}\right) \Delta x \Delta y, \quad \Delta x \Delta y\right\rangle$ Since $\Delta x \Delta y=\Delta \boldsymbol{A}$ ΔA we get

$$
\mathbf{a} \times \mathbf{b}=\left\langle-f_{x}\left(x_{i}, y_{j}\right) \Delta A, \quad-f_{y}\left(x_{i}, y_{j}\right) \Delta A, \quad \Delta A\right\rangle \text { which gives }
$$

$$
\begin{aligned}
& \Delta T_{i j}=\sqrt{\left[f_{x}\left(x_{i}, y_{j}\right)\right]^{2}+\left[f_{y}\left(x_{i}, y_{j}\right)\right]^{2}+1} \Delta A \\
& \quad \text { and } A(S) \approx \sum_{i=1} \sum_{j=1} \sqrt{\left[f_{x}\left(x_{i}, y_{j}\right)\right]^{2}+\left[f_{y}\left(x_{i}, y_{j}\right)\right]^{2}+1} \Delta A
\end{aligned}
$$

Definition: The area of the surface with equation $z=f(x, y)$ over the region D where f_{x} and f_{y} are continuous is given by

$$
A(S)=\iint_{D} \sqrt{\left[f_{x}\right]^{2}+\left[f_{y}\right]^{2}+1} d A
$$

Example: Find the surface area of the part of the surface $z=3 x+y^{2}$ that
lies above the triangle region in the $x y$-plane with vertices $(0,0),(0,2)$, and $(2,2)$.

$$
\begin{array}{lc}
z_{x}=3 & \\
z_{y}=2 y & d x d y \\
& 0 \leq y \leq 2 \\
& 0 \leq x \leq y
\end{array}
$$

$$
\begin{aligned}
& S A=\iint_{D} \sqrt{(3)^{2}+(2 y)^{2}+1} d A \\
& =\iint_{D} \sqrt{10+4 y^{2}} d A \\
& =\int_{y=0}^{2} \int_{x=0}^{y} \sqrt{10+4 y^{2}} d x d y \\
& =\left.\int_{y=0}^{2} x \sqrt{10+7 y^{2}}\right|_{0} ^{y} d y \\
& =\int_{0}^{2} y \sqrt{10+4 y^{2}} d y \\
& u=10+1 s^{2} \\
& \begin{array}{l}
d x=8_{y} d y \\
\frac{1}{8} d_{n}=y d y
\end{array} \\
& n=0 \rightarrow u=10
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{10}^{26} \frac{1}{8} \sqrt{n} d n \quad \begin{array}{l}
y=0 \rightarrow u=10 \\
y=2 \rightarrow u=26 \\
= \\
\frac{1}{8} \\
=\left.\frac{2}{3} n^{3 / 2}\right|_{10} ^{26} \\
=\frac{1}{12}\left[26^{3 / 2}-10^{3 / 2}\right]
\end{array}
\end{aligned}
$$

Example: Find the surface area of the paraboloid given by $z=10-x^{2}-y^{2}$ for $z \geq 1$.

$$
\begin{aligned}
& z_{x}=-2 x \\
& z_{3}=-2 y \\
& 1=10-x^{2}-y^{2} \\
& x^{2}+y^{2}=9
\end{aligned}
$$

use polar

$$
\begin{aligned}
S A & =\iint_{D} \sqrt{(-2 x)^{2}+(-2 y)^{2}+1} d A \\
& =\iint_{D} \sqrt{4 x^{2}+4 y^{2}+1} d A=\int_{\theta=0}^{2 \pi} \int_{r=0}^{3} \sqrt{4 r^{2}+1} \cdot r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{3} r \sqrt{4 r^{2}+1} d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{3} r \sqrt{4 r^{2}+1} d r \\
& \begin{array}{l}
u=4 r^{2}+1 \\
\\
\end{array} \quad \begin{array}{l}
\quad n=8 r d r \\
\frac{1}{8} d v=r d r \\
37 \\
\frac{1}{8} \sqrt{n} d r \\
r=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& n=1 \\
= & \left.2 \pi \cdot \frac{1}{8} \cdot \frac{2}{3} n^{3 / 2}\right|_{1} ^{37} \\
= & 2 \pi \cdot \frac{1}{12}\left[37^{3 / 2}-1\right] \\
= & \frac{\pi}{6}\left[37^{3 / 2}-1\right]
\end{aligned}
$$

$$
\begin{array}{ll}
r=0 & u=1 \\
r=3 & u=37
\end{array}
$$

