Exam 1 Information

You are encouraged to double check this document to make sure that I didn't leave anything off.

- Section 12.1

three dimension coordinate system
distance formula
cylindrical surfaces
plane
sphere
center
radius
completing the square

- Section 12.2

vectors: addition, subtraction, scalar multiplication, magnitude unit vector
vector of a certain length

- Section 12.3
dot product
directional angles and directional cosines
scalar projection
vector projection
- Section 12.4
determinate of a 2 X 2 and a 3 x 3 matrix
cross product
both methods of calculating
right hand rule for direction
order is important
geometric interpretation: area of the parallelogram created by the vectors.
scalar triple product

- Section 12.5

lines in three dimension
vector equation of a line.
paramatric equations of a line
symetric equations of a line
determine if lines are parallel, intersecting, or skew.
planes
vector equation
cartesian queation
normal vector
parallel/perpendicular planes
distance from a point to a plane
distance between to parallel planes

- Section 12.6

quatratic surfaces
be able to identify the different types of equations.

- Section 13.1

vector functions/space curves direction traveled when graphing
limitsof a vector function
what surface does the space curve lie on?

- Section 13.2

derivatives and integrals of vector functions position, velocity, and acceleration
tangent vector at a point on a space curve
equation of a tangent line at a point of a space curve.

- Section 13.3

arc length both two and three dimension arc length function reparameterize a curve with respect to arc length from a particular point(i.e. usually $t=0$). curvature of a space curve three possible formulas unit tangent vector function

- Section 13.4

position, velocity, acceleration function unit tangent vector function unit normal vector function

Any additional topic/information covered in these sections.

