Exam 2 Information

You are encouraged to double check this document to make sure that I didn't leave anything off.

- Section 14.1

Domain
Range for "nice" functions.
Sketch the domain of a two variable function in the $x y$-plane

Level curves(Countour curves)
Level Surfaces.

- Section 14.3

geometric interpretation of partial derivatives f_{x}, f_{y}.
computing partial derivatives.
partial derivative notation.
Higher order partial derivatives.
Clairaut's Theorem

- Section 14.4

tangent plane of a surface: $z=f(x, y)$
using partials to find the normal vector normal line to the tangent plane

Differentials

total differential
Linearization formula
using differentials/Linearization to approximate a calculation.
using differentials to approximate total change when input values have small adjustments, i.e. $d x, d y, \ldots$ are small.
using a vector(needs to be unit) from one point to another point direction of max change(min change) maximum(minimum) value of a directional derivative

Tangent plane to a level surface. i.e. $F(x, y, z)=k$ using partials to find the normal vector normal line to the tangent plane

- Section 14.7

local max/local min location versus value
finding critical points.
second derivative test to classify critical points.
doing algebra correctly
Max/min word problems.
Absolute maximum and absolute minimum.
location versus value
Method to find an absolute max/min on a closed and bounded region.

- Section 14.8

Legrange Multipliers

how to use them to solve max/min word problems.

- Section 14.5
chain rule: case 1 and 2
related rate word problems
implicit differentiation using chain rule

- Section 14.6

gradient vector
directional derivatives
using an angle θ

Any additional topic/information covered in these sections.

