Section 12.5: Additional Problems

1. Find the equation of the plane containing the point $(1,1,1)$ and perpendicular to the line
$\frac{x-1}{2}=\frac{y+2}{5}=\frac{1-z}{3}$
2. Show that these lines are skew.
Line 1:
Line 2
$x=3+t \quad x=4-v$
$y=2-4 t \quad y=3+v$
$z=t \quad z=-2+3 v$
3. Find the angle between these planes.

$$
x+2 y+z=4 \quad 3 x+6 y+2 z=12
$$

4. Determine if these lines are parallel. If you answer was no, then determine if the lines are intersecting or skew. Justify your answer.
$L_{1}: \quad x=t+2, y=1+4 t, z=2 t$
$L_{2}: \quad \frac{x-1}{2}=\frac{y-5}{4}, z=10$
5. Does the line L lie in a plane that would be parallel to the plane P? Justify your answer.
$\mathrm{L}: x=1+3 t, y=1+t, z=1-5 t$
$\mathrm{P}: x+2 y+z=5$
6. Does the line L lie in a plane that would be parallel to the plane P? Justify your answer.
$\mathrm{L}: x=1+4 t, y=1+2 t, z=1-t$
$\mathrm{P}: x+3 y+z=23$
7. Find the distance from the line from the plane.

Line: $x=1-3 t, y=1+t, z=1+t$

Plane: $x+2 y+z=10$
8. Find the distance from the line from the plane.

Line: $x=1+2 t, y=1+t, z=1+t$

Plane: $x+2 y+z=10$

